Skip to main content

Advertisement

Log in

Groundwater fluoride concentrations in the watershed sedimentary basin of Quetta Valley, Pakistan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Litho-geochemical characteristics of low and high fluoride (F) groundwater along with hydrological processes were investigated to delineate its genesis and enrichment mechanism in a watershed sedimentary basin. In this study, groundwater F concentration ranged from 0 to 20 mg/L with a mean and standard deviation of 2.8 and ± 3.7 mg/L, respectively. Out of N = 87, 63% of samples exceeded the World Health Organization (WHO) limit of 1.5 mg/L. The order of cationic and anionic dominance in groundwater samples with mean was found in decreasing order as Na+  > Mg2+  > Ca2+  > K+ and HCO3  > SO42−  > Cl  > PO43−  > NO3 measured in milligrams per liter. Groundwater chemistry changed from Ca-HCO3 to Na-HCO3 type and low to high fluoride as we moved from mountain foot towards the synclinal basin. Low fluoride groundwater reflected weathering, recharge, and reverse ion exchange processes with Ca–HCO3– and Ca–Mg–Cl–type water while high fluoride groundwater revealed base ion exchange, mixing, and desorption as dominant hydrological processes with Na-HCO3 and Na-Cl types of water. Gibb’s diagram showed rock weathering and mineral dissolution as the major geochemical processes controlling water chemistry with an insignificant role of evaporation in the semi-arid area. Fluoride was undersaturated with mineral fluorite, indicating fluoride in groundwater is released by secondary minerals. However, due to complex geological features, groundwater fluoride enrichment was affected by a broad-scale process across a wide area such as depth, residence time, and most important geomorphological units hosting the aquifer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data analyzed during this study can be found in this manuscript and supplementary information file.

References

  • Ainsworth, N. (1933). Mottled teeth. British Dental Journal, 55, 233–250.

    Google Scholar 

  • Alam, K., & Ahmad, N. (2014). Determination of aquifer geometry through geophysical methods: A case study from Quetta Valley Pakistan. Acta Geophysica. https://doi.org/10.2478/s11600-013-0171-8

    Article  Google Scholar 

  • APHA (2005): Standard Methods for the Examination of Water and Wastewater. American Public Health Association

  • Azizullah, A., Khattak, M. N., Richter, P., & Hader, D. P. (2011). Water pollution in Pakistan and its impact on public health–a review. Environmental International, 37(2), 479–497. https://doi.org/10.1016/j.envint.2010.10.007

    Article  CAS  Google Scholar 

  • Brindha, K., and Elango, L. (2011). Fluoride in groundwater: causes, implications and mitigation measures. Fluoride properties, applications, and environmental management, 111–136.

  • Calvi, C., Martinez, D., Dapeña, C., & Gutheim, F. (2016). Abundance and distribution of fluoride concentrations in groundwater: La Ballenera catchment, southeast of Buenos Aires Province Argentina. Environmental Earth Sciences, 75(6), 1–12. https://doi.org/10.1007/s12665-015-4972-8

    Article  CAS  Google Scholar 

  • Chadha, D. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7, 431–439.

    Article  Google Scholar 

  • Chae, G. T., Yun, S. T., Mayer, B., Kim, K. H., Kim, S. Y., Kwon, J. S., & Koh, Y. K. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, 385(1–3), 272–283. https://doi.org/10.1016/j.scitotenv.2007.06.038

    Article  CAS  Google Scholar 

  • Chandio, T. A., Khan, M. N., & Sarwar, A. (2015). Fluoride estimation and its correlation with other physicochemical parameters in drinking water of some areas of Balochistan Pakistan. Environmental Monitoring and Assessment, 187(8), 1–9. https://doi.org/10.1007/s10661-015-4753-6

    Article  CAS  Google Scholar 

  • Chen, H., Yan, M., Yang, X., Chen, Z., Wang, G., Schmidt-Vogt, D., & Xu, J. (2012). Spatial distribution and temporal variation of high fluoride contents in groundwater and prevalence of fluorosis in humans in Yuanmou County, Southwest China. Journal of Hazardous Mater, 235, 201–209. https://doi.org/10.1016/j.jhazmat.2012.07.042

    Article  CAS  Google Scholar 

  • Currell, M., Cartwright, I., Raveggi, M., & Han, D. (2011). Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin China. Applied Geochemistry, 26(4), 540–552. https://doi.org/10.1016/j.apgeochem.2011.01.012

    Article  CAS  Google Scholar 

  • Dean, H. T., & Elvove, E. (1937). Further studies on the minimal threshold of chronic endemic dental fluorosis. Public Health Reports, 1896–1970, 1249–1264.

    Article  Google Scholar 

  • Durrani, I. H., Adnan, S., Ahmad, M., Khair, S. M., & Kakar, E. (2018). Observed long-term climatic variability and its impacts on the groundwater level of Quetta alluvial. Iranian Journal of Science and Technology Transactions A Science, 42(2), 589–600. https://doi.org/10.1007/s40995-017-0235-8

    Article  Google Scholar 

  • Edmunds, W. M., and Smedley, P. L. (2013). Fluoride in natural waters Essentials of medical geology (pp. 311–336): Springer, Dordrecht.

  • Farooqi, A., Masuda, H., Siddiqui, R., & Naseem, M. (2009). Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan. Archives of Environmental Contamination and Toxicology, 56(4), 693–706. https://doi.org/10.1007/s00244-008-9239-x

    Article  CAS  Google Scholar 

  • Fawell, J. K., and Bailey, K. (2006). Fluoride in drinking-water. World Health Organization

  • Gao, X., Su, C., Wang, Y., & Hu, Q. (2013). Mobility of arsenic in aquifer sediments at Datong Basin, northern China: Effect of bicarbonate and phosphate. Journal of Geochemical Exploration, 135, 93–103. https://doi.org/10.1016/j.gexplo.2012.09.001

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090.

    Article  CAS  Google Scholar 

  • He, X., Li, P., Wu, J., Wei, M., Ren, X., & Wang, D. (2021). Poor groundwater quality and high potential health risks in the Datong Basin, northern China: Research from published data. Environmental Geochemistry and Health, 43(2), 791–812. https://doi.org/10.1007/s10653-020-00520-7

    Article  CAS  Google Scholar 

  • Hossain, M., & Patra, P. K. (2020). Hydrogeochemical characterization and health hazards of fluoride enriched groundwater in diverse aquifer types. Environmental Pollution, 258, 113646. https://doi.org/10.1016/j.envpol.2019.113646

    Article  CAS  Google Scholar 

  • Hossain, S., Hosono, T., Yang, H., & Shimada, J. (2016). Geochemical processes controlling fluoride enrichment in groundwater at the western part of Kumamoto area, Japan. Water Air Soil Pollution, 227(10), 1–14. https://doi.org/10.1007/s11270-016-3089-3

    Article  CAS  Google Scholar 

  • Hu, Y., Xia, C., Dong, Z., & Liu, G. (2016). Geochemical characterization of fluoride in the groundwater of the Huaibei Plain China. Analytical Letters. https://doi.org/10.1080/00032719.2016.1199027

    Article  Google Scholar 

  • Hu, Y., You, M., Liu, G., & Dong, Z. (2021). Spatial distribution and potential health risk of fluoride in drinking groundwater sources of Huaibei, Anhui Province. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-87699-6

    Article  CAS  Google Scholar 

  • Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., & Marathe, K. V. (2015). Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management, 162, 306–325. https://doi.org/10.1016/j.jenvman.2015.07.020

    Article  CAS  Google Scholar 

  • Jehan, S., Khan, S., Khattak, S. A., Muhammad, S., Rashid, A., & Muhammad, N. (2019). Hydrochemical properties of drinking water and their sources apportionment of pollution in Bajaur agency, Pakistan. Measurement, 139, 249–257. https://doi.org/10.1016/j.measurement.2019.02.090

    Article  Google Scholar 

  • Kazmi, A., Abbas, G., Younas, S. (2005). Water resources and hydrogeology of Quetta Basin, Balochistan, Pakistan. Geological Survey of Pakistan, Quetta

  • Khair, S. M., Mushtaq, S., & Reardon-Smith, K. (2015). Groundwater governance in a water starved country: Public policy, farmers’ perceptions, and drivers of tube well adoption in Balochistan. Pakistan. Ground Water, 53(4), 626–637. https://doi.org/10.1111/gwat.12250

    Article  CAS  Google Scholar 

  • Kim, K., & Jeong, G. Y. (2005). Factors influencing the natural occurrence of fluoride-rich 711 groundwaters: A case study in the southeastern part of the Korean Peninsula. Chemosphere, 58(10), 1399–1408.

    Article  CAS  Google Scholar 

  • Liu, H., Guo, H., Yang, L., Wu, L., Li, F., Li, S., & Liang, X. (2015). Occurrence and formation of high fluoride groundwater in the Hengshui area of the North China Plain. Environmental Earth Sciences, 74(3), 2329–2340.

    Article  CAS  Google Scholar 

  • Luo, W., Gao, X., & Zhang, X. (2018). Geochemical processes controlling the groundwater chemistry and fluoride contamination in the Yuncheng Basin, China—An area with complex hydrogeochemical conditions. PLoS ONE, 13(7), e0199082. https://doi.org/10.1371/journal.pone.0199082

    Article  CAS  Google Scholar 

  • Mao, M., Wang, X., & Zhu, X. (2021). Hydrochemical characteristics and pollution source apportionment of the groundwater in the east foothill of the Taihang Mountains, Hebei Province. Environment and Earth Science, 80, 14. https://doi.org/10.1007/s12665-020-09341-4

    Article  CAS  Google Scholar 

  • Mukherjee, A., Saha, D., Harvey, C. F., Taylor, R. G., Ahmed, K. M., & Bhanja, S. N. (2015). Groundwater systems of the Indian sub-continent. Journal of Hydrology: Regional Studies, 4, 1–14. https://doi.org/10.1016/j.ejrh.2015.03.005

    Article  Google Scholar 

  • Naseem, S., Rafique, T., Bashir, E., Bhanger, M. I., Laghari, A., & Usmani, T. H. (2010). Lithological influences on the occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert Pakistan. Chemosphere, 78(11), 1313–1321.

    Article  CAS  Google Scholar 

  • Ozsvath, D. L. (2009). Fluoride and environmental health: A review. Reviews in Environmental Science and Bio/technology, 8(1), 59–79.

    Article  CAS  Google Scholar 

  • Pi, K., Wang, Y., Xie, X., Su, C., Ma, T., Li, J., & Liu, Y. (2015). Hydrogeochemistry of co-occurring geogenic arsenic, fluoride, and iodine in groundwater at Datong Basin, northern China. Journal of Hazardous Material, 300, 652–661. https://doi.org/10.1016/j.jhazmat.2015.07.080

    Article  CAS  Google Scholar 

  • Rafique, T., Naseem, S., Ozsvath, D., Hussain, R., Bhanger, M. I., & Usmani, T. H. (2015). Geochemical controls of high fluoride groundwater in Umarkot sub-district, Thar Desert, Pakistan. Science of the Total Environment, 530, 271–278. https://doi.org/10.1016/j.scitotenv.2015.05.038

    Article  CAS  Google Scholar 

  • Rao, N. S., Dinakar, A., Sravanthi, M., & Kumari, B. K. (2021). Geochemical characteristics and quality of groundwater evaluation for drinking, irrigation, and industrial purposes from a part of hard rock aquifer of South India. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-12404-z

    Article  Google Scholar 

  • Rashid, A., Farooqi, A., Gao, X., Zahir, S., Noor, S., & Khattak, J. A. (2020). Geochemical modeling, source apportionment, health risk exposure, and control of higher fluoride in groundwater of sub-district Dargai. Pakistan. Chemosphere, 243, 125409. https://doi.org/10.1016/j.chemosphere.2019.125409

    Article  CAS  Google Scholar 

  • Rashid, A., Guan, D.-X., Farooqi, A., Khan, S., Zahir, S., Jehan, S., Khattak, S. A., Khan, M. S., & Khan, R. (2018). Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. Science of the Total Environment, 635, 203–215.

    Article  CAS  Google Scholar 

  • Rashid, A., Khan, S., Ayub, M., Sardar, T., Jehan, S., Zahir, S., Khan, M. S., Muhammad, J., Khan, R., & Ali, A. (2019a). Mapping human health risk from exposure to potential toxic metal contamination in groundwater of Lower Dir, Pakistan: Application of multivariate and geographical information system. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.03.066

    Article  Google Scholar 

  • Rashid, A., Khattak, S. A., Ali, L., Zaib, M., Jehan, S., Ayub, M., & Ullah, S. (2019b). Geochemical profile and source identification of surface and groundwater pollution of district Chitral, Northern Pakistan. Microchemical Journal, 145, 1058–1065.

    Article  CAS  Google Scholar 

  • Raza, M., Farooqi, A., Niazi, N. K., & Ahmad, A. (2016). Geochemical control on spatial variability of fluoride concentrations in groundwater from rural areas of Gujrat in Punjab Pakistan. Environmental Earth Sciences. https://doi.org/10.1007/s12665-016-6155-7

    Article  Google Scholar 

  • Reddy, A. G. S., Reddy, D. V., & Kumar, M. S. (2016). Hydrogeochemical processes of fluoride enrichment in Chimakurthy pluton, Prakasam District, Andhra Pradesh. India. Environmental Earth Sciences, 75(8), 5478. https://doi.org/10.1007/s12665-016-5478-8

    Article  CAS  Google Scholar 

  • Sagintayev, Z., Sultan, M., Khan, S. D., Khan, S. A., Mahmood, K., Yan, E., & Marsala, P. (2012). A remote sensing contribution to hydrologic modeling in arid and inaccessible watersheds, Pishin Lora basin, Pakistan. Hydrological Processes, 26(1), 85–99. https://doi.org/10.1002/hyp.8114

    Article  Google Scholar 

  • Saxena, V. K., & Ahmed, S. (2001). Dissolution of fluoride in groundwater: A water-rock interaction study. Environmental Geology, 40(9), 1084–1087.

    Article  CAS  Google Scholar 

  • Selvam, S. (2015). A preliminary investigation of lithogenic and anthropogenic influence over fluoride ion chemistry in the groundwater of the southern coastal city, Tamilnadu, India. Environmental Monitoring and Assessment, 187(3), 106. https://doi.org/10.1007/s10661-015-4326-8

    Article  CAS  Google Scholar 

  • Su, H., Wang, J., & Liu, J. (2019). Geochemical factors controlling the occurrence of high fluoride groundwater in the western region of the Ordos basin, northwestern China. Environmental Pollution, 252, 1154–1162. https://doi.org/10.1016/j.envpol.2019.06.046

    Article  CAS  Google Scholar 

  • Tahir, M. A., & Rasheed, H. (2013). Fluoride in the drinking water of Pakistan and the possible risk of crippling fluorosis. Drinking-Water Engineering and Science, 6(1), 17–23. https://doi.org/10.5194/dwes-6-17-2013

    Article  CAS  Google Scholar 

  • WAPDA. 2001. Water and power development authority. Individual basinal reports of Balochistan, Hydrogeology Project, Quetta, 1982–2000, Pakistan, Water, and Power Development Authority, Pakistan, Quetta

  • Wei, C., Guo, H., Zhang, D., Wu, Y., Han, S., An, Y., & Zhang, F. (2016). Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, the southern part of Ningxia Province, China. Environmental Geochemistry and Health, 38(1), 275–290. https://doi.org/10.1007/s10653-015-9716-x

    Article  CAS  Google Scholar 

  • Wen, D., Zhang, F., Zhang, E., Wang, C., Han, S., & Zheng, Y. (2013). Arsenic, fluoride, and iodine in groundwater of China. Journal of Geochemical Exploration, 135, 1–21. https://doi.org/10.1016/j.gexplo.2013.10.012

    Article  CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking water quality. World Health Organization, 216, 303–304.

    Google Scholar 

  • Zhang, Y., Ma, R., & Li, Z. (2014). Human health risk assessment of groundwater in Hetao Plain (Inner Mongolia Autonomous Region, China). Environmental Monitoring and Assessment, 186(8), 4669–4684. https://doi.org/10.1007/s10661-014-3729-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Department of Environmental Science, Quaid-i-Azam University, Islamabad. Sir Mazhar and Sir Abdullah of Public Health and Engineering Department (PHED) Quetta shared valuable data of the well logs, while Dr. Yaqoob of the National Center of Physics (NCP) helped in soil analysis; without their support and assistance, the study would have been impossible to be conducted.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taimoor Shah Durrani or Abida Farooqi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durrani, T.S., Farooqi, A. Groundwater fluoride concentrations in the watershed sedimentary basin of Quetta Valley, Pakistan. Environ Monit Assess 193, 644 (2021). https://doi.org/10.1007/s10661-021-09365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09365-8

Keywords

Navigation