Skip to main content

Advertisement

Log in

Fishway in hydropower dams: a scientometric analysis

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Building dams for hydroelectric use causes several negative effects on the aquatic fauna with special attention to fish communities. In fact, among other impacts, dams act as a barrier for migratory fish, causing discontinuities in rivers and not allowing fish to move to the headwaters to breed and back to the lower portions of rivers, to grow. For more than 300 years, fishways have been used to minimize the impact of dams. Here, we assess the worldwide knowledge about fishways, identifying the temporal and spatial pattern and the situation of Brazil in this global pattern. For this, we conducted scientometric research on the Web of Science repository with the following words: weir, fish, facilities, ladder, pass, dam, fish ladder, fish pass, fishway, hydropower, Petromyzon, and salmon between 1985 and 2019. Initially, we obtained 1282 articles. After a selection, 324 articles aimed to describe fishway efficiency and the relationship with the fish fauna remained. Most of the articles on dams, fishways, and fish are from North America and Europe. Among the articles in South America, most are from Brazil. Nonetheless, information on the topic is incipient in Brazil, since the country has one of the biggest hydropower in the world and 42 scientific articles about fishways published in the international scientific database. Ecology is the area of knowledge with most articles, with continuous growth in the last 10 years. Studies in the field of ecology are strategical, as this field can integrate different areas of knowledge to test the efficiency of fishways in fish conservation and may be able to answer the question: “Are fishways an ecological trap?” Research focusing on this question is important to understand the efficiency of fishways to better evaluate solutions to minimize the negative effects of dams on fish and increase the effectiveness of fishways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available as supplementary material.

References

  • Aarestrup, K., Lucas, M. C., & Hansen, J. A. (2003). Efficiency of a nature-like bypass channel for sea trout (Salmo trutta) ascending a small Danish stream studied by PIT telemetry. Ecology of Freshwater Fish, 12, 160–168. https://doi.org/10.1034/j.1600-0633.2003.00028.x

    Article  Google Scholar 

  • Agostinho, A. A., Gomes, L. C., Santos, N. C. L., Ortega, J. C. G., & Pelicice, F. M. (2015). Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and management. Fisheries Research, 173, 26–36. https://doi.org/10.1016/j.fishres.2015.04.006

    Article  Google Scholar 

  • Agostinho, A., Pelicice, F., & Gomes, L. (2008). Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Brazilian Journal of Medical and Biological Research, 68, 1119–1132. https://doi.org/10.1590/S1519-69842008000500019

    Article  CAS  Google Scholar 

  • Agostinho, A. A., Pelicice, F. M., & Gomes, L. C. (2007a). Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Eduem.

    Google Scholar 

  • Agostinho, C. S., Agostinho, A. A., Pelicice, F., De Almeida, D. A., & Marques, E. E. (2007b). Selectivity of fish ladders: A bottleneck in Neotropical fish movement. Neotropical Ichthyology, 5, 205–213. https://doi.org/10.1590/S1679-62252007000200015

    Article  Google Scholar 

  • Agostinho, C. S., Pelicice, F. M., Marques, E. E., Soares, A. B., & de Almeida, D. A. A. (2011). All that goes up must come down? Absence of downstream passage through a fish ladder in a large Amazonian river. Hydrobiologia, 675, 1–12. https://doi.org/10.1007/s10750-011-0787-0

    Article  Google Scholar 

  • Anderson, E. P., Jenkins, C. N., Heilpern, S., Maldonado-Ocampo, J. A., Carvajal-Vallejos, F. M., Encalada, A. C., Rivadeneira, J. F., Hidalgo, M., Cañas, C. M., Ortega, H., Salcedo, N., Maldonado, M., & Tedesco, P. A. (2018). Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Science Advances, 4(1), eaao1642. https://doi.org/10.1126/sciadv.aao1642

    Article  Google Scholar 

  • Arnekleiv, J. V., Kraabol, M., & Museth, J. (2007). Efforts to aid downstream migrating brown trout (Salmo trutta L.) kelts and smolts passing a hydroelectric dam and a spillway. Hydrobiologia, 582, 5–15. https://doi.org/10.1007/s10750-006-0547-8

    Article  Google Scholar 

  • Barthem, R. B., Goulding, M., Leite, R. G., Cañas, C., Forsberg, B., Venticinque, E., Petry, P., Ribeiro, M. L. B., Chuctaya, J., & Mercado, A. (2017). Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles. Scientific Reports, 7, 41784. https://doi.org/10.1038/srep41784

    Article  CAS  Google Scholar 

  • Bermmann, C. (2007). Energia e classes sociais no Brasil. Estud. Avançados, 21, 139–153.

    Article  Google Scholar 

  • Birnie-Gauvin, K., Franklin, P., Wilkes, M., & Aarestrup, K. (2019). Moving beyond fitting fish into equations: Progressing the fish passage debate in the Anthropocene. Aquatic Conservation: Marine and Freshwater Ecosystems. https://doi.org/10.1002/aqc.2946

    Article  Google Scholar 

  • Branquinho, A., & Brito, D. (2016). Impact of dams on global biodiversity: A scientometric analysis. Neotropical Biology and Conservation. https://doi.org/10.4013/nbc.2016.112.07

    Article  Google Scholar 

  • CADA, G. F. (1998). Fish passage mitigation at hydroelectric power projects in the United States. In M. Jungwirth, S. Schmutz, & S. Weiss (Eds.), Fish migration and fish bypasses (pp. 208–219). Fishing News Books.

    Google Scholar 

  • Castro-Santos, T., Cotel, A., & Webb, P. W., et al. (2009). Fishway evaluations for better bioengineering: An integrative approach. In A. J. Haro, K. L. Smith, R. A. Rulifson, C. M. Moffit, R. J. Klauda, & M. J. Dadswel (Eds.), Challenges for diadromous fishes in a dynamic global environment. American Fisheries Society Symposium.

    Chapter  Google Scholar 

  • Caudill, C. C., Peery, C. A., Daigle, W. R., Zabel, R. W., Keefer, M. L., Burke, B. J., et al. (2007). Slow dam passage in adult Columbia River salmonids associated with unsuccessful migration: Delayed negative effects of passage obstacles or condition-dependent mortality? Canadian Journal of Fisheries and Aquatic Sciences, 64, 979–995. https://doi.org/10.1139/f07-065

    Article  Google Scholar 

  • Celestino, L. F., Sanz-Ronda, F. J., Miranda, L. E., Makrakis, M. C., Dias, J. H. P., & Makrakis, S. (2019). Bidirectional connectivity via fish ladders in a large Neotropical river. River Research and Applications, 35(3), 236–246. https://doi.org/10.1002/rra.3404

    Article  Google Scholar 

  • Clay, C. H. (1995). Design of fishways and other fish facilities. Lewis Publishers.

    Google Scholar 

  • Dauble, D. D., & Geist, D. R. (2000). Comparison of mainstem spawning habitats for two populations of fall Chinook salmon in the Columbia River basin. Regulated Rivers: Research & Management: an International Journal Devoted to River Research and Management, 16(4), 345–361.

    Google Scholar 

  • de C Britto, S. G., & Carvalho, E. D. (2013). Reproductive migration of fish and movement in a series of reservoirs in the Upper Parana River basin, Brazil. Fisheries Management and Ecology, 20, 426–433. https://doi.org/10.1111/fme.12030

    Article  Google Scholar 

  • Denil, G. (1909). Echelles a poissons et leur application aux barrages des Meuse et d’Ourthe. In: Annales des Travaux Publics de Belgique (Fraçaise de Pisciculture), (pp. 97–102).

  • Esri, I. (2013). ArcGIS. Retrieved from http://www.esri.com/software/arcgis/index.html.

  • Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology Evolution and Systematics, 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Fouché, P. S. O., & Heath, R. G. (2013). Functionality evaluation of the Xikundu fishway, Luvuvhu River, South Africa. African Journal of Aquatic Science, 38, 69–84. https://doi.org/10.2989/16085914.2013.773418

    Article  Google Scholar 

  • Froese, R. (2018). FishBase. World Wide Web Electron. Publ.

    Google Scholar 

  • Gobin, A., & Guénaux, G. (1907). La Pisciculture en Eaux Douces. Baillière Fils, 189, 1.

    Google Scholar 

  • Godinho, A. L., & Kynard, B. (2009). Migratory fishes of Brazil: Life history and fish passage needs. River Research and Applications, 25, 702–712. https://doi.org/10.1002/rra.1180

    Article  Google Scholar 

  • Godoy, M. P. (1985). Aquicultura-atividade multidisciplinar, Escadas e outras facilidades para passagens de peixes - estacoes de piscicultura. Florianopolis, SC: Centrais Eletricas do Sul do Brasil S.A., Florianopolis, SC (Brazil).

  • Grande, R. (1990). Fish ladders in Norway. In Proceedings of the international symposium on fishway ’90 (Gifu, Japão), (pp. 17–23).

  • Grande, R. (1996). A new type of fishway in Norway: How a regulated and acidifild river was restored. In: International Conference on Fish Migration and Fish Bypass-Channels (Vienna).

  • Hilsdorf, S., & Guimarães, R. (2008). Por Que Os Peixes Migram? Sci. Am. Bras. (pp. 76–80).

  • Hoeinghaus, D. J., Agostinho, A. A., Gomes, L. C., Pelicice, F. M., Okada, E. K., Latini, J. D., et al. (2009). Effects of river impoundment on ecosystem services of large tropical rivers: Embodied energy and market value of artisanal fisheries. Conservation Biology, 23, 1222–1231. https://doi.org/10.1111/j.1523-1739.2009.01248.x

    Article  Google Scholar 

  • Humphries, P., & Lake, P. S. (2000). Fish larvae and the management of regulated rivers. Regulated Rivers: Research & Management., 16, 421–432. https://doi.org/10.1002/1099-1646(200009/10)16:5%3c421::AIDRRR594%3e3.0.CO;2-4

    Article  Google Scholar 

  • Katopodis, C. (1992). Introduction to fishway design. Oceans, 67, 1.

    Google Scholar 

  • Kemenes, A., Melack, J., & Forsberg, B. R. (2008). Hidrelétricas e Aquecimento Global Emissão de metano e gás carbônico é elevada em usinas do trópico úmido. As Hidrelétricas e o aquecimento global.

  • Kemp, P. S. (2016). Meta-analyses, metrics and motivation: Mixed messages in the fish passage debate. River Research and Applications. https://doi.org/10.1002/rra.3082

    Article  Google Scholar 

  • Kemp, P. S., & O’hanley, J. R. . (2010). Procedures for evaluating and prioritising the removal of fish passage barriers: A synthesis. Fisheries Management and Ecology, 17(4), 297–322. https://doi.org/10.1111/j.1365-2400.2010.00751.x

    Article  Google Scholar 

  • Landmark, A. (1883). Description of salmon passes on the river Sire. Chrstiania.

    Google Scholar 

  • Larinier, M. (2002). Fishways - general considerations. Bull: Français la Pêche la Piscic. https://doi.org/10.1051/kmae/2002104

    Book  Google Scholar 

  • Larinier, M. (2008). Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia, 609(1), 97–108. https://doi.org/10.1007/s10750-008-9398-9

    Article  Google Scholar 

  • Lira, N. A., Pompeu, P. S., Agostinho, C. S., Agostinho, A. A., Arcifa, M. S., & Pelicice, F. M. (2017). Fish passages in South America: An overview of studied facilities and research effort. Neotrop. Ichthyol., 15, 1–14. https://doi.org/10.1590/1982-0224-20160139

    Article  Google Scholar 

  • Martins, S. L. (2005). Sistemas Para a Transposição De Peixes Neotropicais Potamódromos. https://doi.org/10.11606/T.3.2005.tde-13092005-084816

    Article  Google Scholar 

  • McKay, S. K., Schramski, J. R., Conyngham, J. N., & Fischenich, J. C. (2013). Assessing upstream fish passage connectivity with network analysis. Ecological Applications, 23(6), 1396–1409.

    Article  Google Scholar 

  • McLaughlin, R. L., Smyth, E. R. B., Castro-Santos, T., Jones, M. L., Koops, M. A., Pratt, T. C., et al. (2013). Unintended consequences and trade-offs of fish passage. Fish and Fisheries. https://doi.org/10.1111/faf.12003

    Article  Google Scholar 

  • McLeod, A. M., & Nemenyi, P. (1941). An Investigation of Fishways., 23, 72.

    Google Scholar 

  • Naughton, G. P., Bjornn, T. C., Stuehrenberg, L. C., Keefer, M. L., Caudill, C. C., & Peery, C. A. (2005). Late-season mortality during migration of radio-tagged adult sockeye salmon (Oncorhynchus nerka) in the Columbia River. Canadian Journal of Fisheries and Aquatic Sciences, 62, 30–47. https://doi.org/10.1139/f04-147

    Article  Google Scholar 

  • Nelson, J. S., Grande, T. C., & Wilson, M. V. H. (2016). Fishes of the world. Wiley. https://doi.org/10.1002/9781119174844

    Book  Google Scholar 

  • Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science, 308, 405–408. https://doi.org/10.1126/science.1107887

    Article  CAS  Google Scholar 

  • Noonan, M. J., Grant, J. W., & Jackson, C. D. (2012). A quantitative assessment of fish passage efficiency. Fish and Fisheries, 13(4), 450–464. https://doi.org/10.1111/j.1467-2979.2011.00445.x

    Article  Google Scholar 

  • Pelicice, F. M., & Agostinho, A. A. (2008). Fish-passage facilities as ecological traps in large neotropical rivers. Conservation Biology, 22, 180–188. https://doi.org/10.1111/j.1523-1739.2007.00849.x

    Article  Google Scholar 

  • Pelicice, F. M., Pompeu, P. S., & Agostinho, A. A. (2015). Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries, 16, 697–715. https://doi.org/10.1111/faf.12089

    Article  Google Scholar 

  • Pelicice, F. M., Pompeu, P. S., & Agostinho, A. A. (2020). Fish conservation must go beyond the concrete: A comment on Celestino et al. (2019). River Research and Applications, 36(7), 1373–1376. https://doi.org/10.1002/rra.3626

    Article  Google Scholar 

  • Pompeu, P. D. S., & Martinez, C. B. (2007). Efficiency and selectivity of a trap and truck fish passage system in Brazil. Neotropical Ichthyology, 5, 169–176. https://doi.org/10.1590/S1679-62252007000200011

    Article  Google Scholar 

  • Pompeu, P. S., Nogueira, L. B., Godinho, H. P., & Martinez, C. B. (2011). Downstream passage of fish larvae and eggs through a small-sized reservoir, Mucuri river, Brazil. Zoology, 28, 739–746. https://doi.org/10.1590/S1984-46702011000600006

    Article  Google Scholar 

  • Pereira, H. R., Gomes, L. F., Barbosa, H. O., Pelicice, F. M., Nabout, J. C., Teresa, F. B., et al. (2020). Research on dams and fishes: Determinants, directions, and gaps in the world scientific production. Hydrobiologia, 847, 579–592. https://doi.org/10.1007/s10750-019-04122-y

    Article  Google Scholar 

  • Rakowitz, G., Berger, B., Kubecka, J., & Keckeis, H. (2008). Functional role of environmental stimuli for the spawning migration in Danube nase Chondrostoma nasus (L.). Ecology of Freshwater Fish, 17(3), 502–514. https://doi.org/10.1111/j.1600-0633.2008.00302.x

    Article  Google Scholar 

  • Reyes-Gavilán, F. G., Garrido, R., Nicieza, A. G., Toledo, M. M., & Brava, F. (1996). Fish community variation along physical gradients in short streams of northern Spain and the disruptive effect of dams. Belgium, 321, 155–163.

    Google Scholar 

  • Roscoe, D. W., & Hinch, S. G. (2010). Effectiveness monitoring of fish passage facilities: Historical trends, geographic patterns and future directions. Fish and Fisheries, 11, 12–33. https://doi.org/10.1111/j.1467-2979.2009.00333.x

    Article  Google Scholar 

  • Sanyanga, R. (2013). World Bank gambles on megadams in Congo world’s biggest dam won’t solve world’s biggest energy gap. World Rivers Rev., 28, 4–5.

    Google Scholar 

  • Silva, A. T., Lucas, M. C., Castro-Santos, T., Katopodis, C., Baumgartner, L. J., Thiem, J. D., et al. (2017). The future of fish passage science, engineering, and practice. Fish and Fisheries. https://doi.org/10.1111/faf.12258

    Article  Google Scholar 

  • Silva, L. G. M. (2012). Parâmetros migratórios e transposição de Curimbatás e Mandis-amarelos no Médio rio Grande. In J. M. Lopes & F. O. Silva (Eds.), Série Peixe Vivo: transposição de peixes (pp. 111–132). Belo Horizonte.

    Google Scholar 

  • Sneddon, C. (2015). Concrete revolution: Large dams, Cold War concrete revolution: Large dams, Cold War geopolitics, and the US Bureau of Reclamation. University of Chicago Press. https://doi.org/10.1080/2325548X.2018.1402286

    Book  Google Scholar 

  • Souza, P., & Valencio, N. F. L. S. (2005). O papel das Pequenas Centrais Hidrelétricas (PCH’s) no contexto político-institucional da reestruturação do setor elétrico nacional 1 The role of small hydroelectric centres (SHC’s) in the political institutional context of the restructuring of t. Rev. Int. Desenvolv. Local, 6, 65–76.

    Google Scholar 

  • Timpe, K., & Kaplan, D. (2017). The changing hydrology of a dammed Amazon. Science Advances, 3, 1–14. https://doi.org/10.1126/sciadv.1700611

    Article  Google Scholar 

  • Thurow, R. (2016). Life histories of potamodromous fishes. Springer. https://doi.org/10.1201/b21321-7

    Book  Google Scholar 

  • Vasconcelos, L. P., Alves, D. C., da Câmara, L. F., & Hahn, L. (2020). Dams in the Amazon: The importance of maintaining free-flowing tributaries for fish reproduction. Aquatic Conservation. https://doi.org/10.1002/aqc.3465

    Article  Google Scholar 

  • Vilar. (2012). Energias renováveis na África ocidental: Estado, Experiências e TendênciaS. 2012th ed. Casa africa.

  • Wagner, H.-J., & Mathur, J. (2011). Introduction to hydro energy systems. Springer. https://doi.org/10.1007/978-3-642-20709-9

    Book  Google Scholar 

  • Wertheimer, R. H., & Evans, A. F. (2005). Downstream passage of steelhead kelts through hydroelectric dams on the lower Snake and Columbia Rivers. Transactions of the American Fisheries Society, 134, 853–865. https://doi.org/10.1577/T04-219.1

    Article  Google Scholar 

  • Wilkes, M. A., Webb, J. A., Pompeu, P. S., Silva, L. G. M., Vowles, A. S., Baker, C. F., et al. (2019). Not just a migration problem: Metapopulations, habitat shifts, and gene flow are also important for fishway science and management. River Research and Applications, 35, 1688–1696. https://doi.org/10.1002/rra.3320

    Article  Google Scholar 

  • Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., et al. (2016). Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 351, 128–129. https://doi.org/10.1126/science.aac7082

    Article  CAS  Google Scholar 

  • World Commission on Dams. (2000). Dams and development: Framework for decision-making. WWF-UK and the International Institute for Environment and Development UK and USA: Earthscan Publications Ltd.

Download references

Funding

Part of this study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) finance code 001.

Author information

Authors and Affiliations

Authors

Contributions

JLB-S: writing—original draft (lead); KD-S: writing—review and editing (equal); LSB: writing—review and editing (equal); JBDS: writing—review and editing (equal); ADMS: writing—review and editing (equal); LMDS: writing—review and editing (equal); TBV: formal analysis (lead) and supervision (lead).

Corresponding author

Correspondence to Thiago Bernardi Vieira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito-Santos, J.L., Dias-Silva, K., Brasil, L.S. et al. Fishway in hydropower dams: a scientometric analysis. Environ Monit Assess 193, 752 (2021). https://doi.org/10.1007/s10661-021-09360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09360-z

Keywords

Navigation