Skip to main content

Advertisement

Log in

Mobile monitoring and spatial prediction of black carbon in Cairo, Egypt

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study harnesses the power of mobile data in developing a spatial model for predicting black carbon (BC) concentrations within one of the most heavily populated regions in the Middle East and North Africa MENA region, Greater Cairo Region (GCR) in Egypt. A mobile data collection campaign was conducted in GCR to collect BC measurements along specific travel routes. In total, 3,300 km were travelled across a widespread 525 km of routes. Reported average BC values were around 20 µg/m3, announcing an alarming order of magnitude value when compared to the maximum reported values in similar studies. A bi-directional stepwise land use regression (LUR) model was developed to select the best combination of explanatory variables and generate an exposure surface for BC, in addition to a number of machine learning models (random forest gradient boost, light gradient boost model (LightGBM), Keras neural network (NN)). Data from 7 air quality (AQ) stations were compared—in terms of mean square error (MSE) and mean absolute error (MAE)—with predictions from the LUR and the NN model. The NN model estimated higher BC concentrations in the downtown areas, while lower concentrations are estimated for the peripheral area at the east side of the city. Such results shed light on the credibility of the LUR models in generating a general spatial trend of BC concentrations while the superiority of NN in BC accuracy estimation (0.023 vs 0.241 in terms of MSE and 0.12 vs 0.389 in terms of MAE; of NN vs LUR respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

References

  • Adams, M. D., Massey, F., Chastko, K., & Cupini, C. (2020). Spatial modelling of particulate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction. Atmospheric Environment, 230(April), 117479. https://doi.org/10.1016/j.atmosenv.2020.117479

    Article  CAS  Google Scholar 

  • Alimissis, A., Philippopoulos, K., Tzanis, C. G., & Deligiorgi, D. (2018). Spatial estimation of urban air pollution with the use of artificial neural network models. Atmospheric Environment, 191(August), 205–213. https://doi.org/10.1016/j.atmosenv.2018.07.058

    Article  CAS  Google Scholar 

  • Angelevska, B., Atanasova, V., & Andreevski, I. (2021). Urban air quality guidance based on measures categorization in road transport. Civil Engineering Journal (Iran), 7(2), 253–267. https://doi.org/10.28991/cej-2021-03091651

  • Bellinger, C., Mohomed Jabbar, M. S., Zaïane, O., & Osornio-Vargas, A. (2017). A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health, 17(1), 1–19. https://doi.org/10.1186/s12889-017-4914-3

    Article  Google Scholar 

  • Boman, J., Lindén, J., Thorsson, S., Holmer, B., & Eliasson, I. (2009). A tentative study of urban and suburban fine particles (PM2.5) collected in Ouagadougou, Burkina Faso. X-Ray Spectrometry, 38(4), 354–362. https://doi.org/10.1002/xrs.1173

  • Boman, J., Shaltout, A. A., Abozied, A. M., & Hassan, S. K. (2013). On the elemental composition of PM2.5 in central Cairo, Egypt. X-Ray Spectrometry, 42(4), 276–283. https://doi.org/10.1002/xrs.2464

  • Cesari, D., Merico, E., Dinoi, A., Marinoni, A., Bonasoni, P., & Contini, D. (2018). Seasonal variability of carbonaceous aerosols in an urban background area in Southern Italy. Atmospheric Research, 200(October 2017), 97–108. https://doi.org/10.1016/j.atmosres.2017.10.004

  • Cetin, M., & Sevik, H. (2016). Change of air quality in kastamonu city in terms of particulate matter and CO2 amount. Oxidation Communications, 39(4–II), 3394–3401.

  • Cha, Y., Lee, S., & Lee, J. (2019). Measurement of black carbon concentration and comparison with PM 10 and PM 2.5 concentrations monitored in Chungcheong Province, Korea. Aerosol and Air Quality Research, 19(3), 541–547. https://doi.org/10.4209/aaqr.2018.08.0325

  • Cheng, Z., Luo, L., Wang, S., Wang, Y., Sharma, S., Shimadera, H., et al. (2016). Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 89–90, 212–221. https://doi.org/10.1016/j.envint.2016.02.003

    Article  CAS  Google Scholar 

  • Devarakonda, S., Sevusu, P., Liu, H., Liu, R., Iftode, L., & Nath, B. (2013). Real-time air quality monitoring through mobile sensing in metropolitan areas. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/2505821.2505834

    Article  Google Scholar 

  • Deville Cavellin, L., Weichenthal, S., Tack, R., Ragettli, M. S., Smargiassi, A., & Hatzopoulou, M. (2016). Investigating the use of portable air pollution sensors to capture the spatial variability of traffic-related air pollution. Environmental Science & Technology, 50(1), 313–320. https://doi.org/10.1021/acs.est.5b04235

    Article  CAS  Google Scholar 

  • Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., et al. (2019). An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environment International, 130(January), 104909. https://doi.org/10.1016/j.envint.2019.104909

  • Farrell, W. J., Weichenthal, S., Goldberg, M., & Hatzopoulou, M. (2015). Evaluating air pollution exposures across cycling infrastructure types: Implications for facility design. Journal of Transport and Land Use, 8(3), 131–149. https://doi.org/10.5198/jtlu.2015.702

    Article  Google Scholar 

  • Farrell, W., Weichenthal, S., Goldberg, M., Valois, M., Shekarrizfard, M., & Hatzopoulou, M. (2016). Near roadway air pollution across a spatially extensive road and cycling network. Environmental Pollution, 212, 498–507. https://doi.org/10.1016/j.envpol.2016.02.041.

    Article  CAS  Google Scholar 

  • Gibergans-Báguena, J., Hervada-Sala, C., & Jarauta-Bragulat, E. (2020). The quality of urban air in Barcelona: A new approach applying compositional data analysis methods. Emerging Science Journal, 4(2), 113–121. https://doi.org/10.28991/esj-2020-01215

  • Gupta, P., Jangid, A., & Kumar, R. (2019). Measurement of PM10, PM2.5 and black carbon and assessment of their health effects in Agra, A Semiarid Region of India. Proceedings of the Indian National Science Academy, 85(3), 667–679. https://doi.org/10.16943/ptinsa/2019/49677

  • Hankey, S., & Marshall, J. D. (2015). On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size. Atmospheric Environment, 122, 65–73. https://doi.org/10.1016/j.atmosenv.2015.09.025

    Article  CAS  Google Scholar 

  • Jeong, C., Evans, G. J., Healy, R. M., Jadidian, P., Wentzell, J., Liggio, J., & Brook, J. R. (2015). Rapid physical and chemical transformation of traffic–related atmospheric particles near a highway. Atmospheric Pollution Research, 6(4), 662–672. https://doi.org/10.5094/APR.2015.075

    Article  CAS  Google Scholar 

  • Ji, D., Zhang, J., He, J., Wang, X., Pang, B., Liu, Z., et al. (2016). Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmospheric Environment, 125, 293–306. https://doi.org/10.1016/j.atmosenv.2015.11.020

    Article  CAS  Google Scholar 

  • Kerckhoffs, J., Hoek, G., Vlaanderen, J., van Nunen, E., Messier, K., Brunekreef, B., et al. (2017). Robustness of intra urban land-use regression models for ultrafine particles and black carbon based on mobile monitoring. Environmental Research, 159(May), 500–508. https://doi.org/10.1016/j.envres.2017.08.040

    Article  CAS  Google Scholar 

  • Klompmaker, J. O., Montagne, D. R., Meliefste, K., Hoek, G., & Brunekreef, B. (2015). Spatial variation of ultrafine particles and black carbon in two cities: Results from a short-term measurement campaign. Science of the Total Environment, 508, 266–275. https://doi.org/10.1016/j.scitotenv.2014.11.088

    Article  CAS  Google Scholar 

  • Krecl, P., Cipoli, Y. A., Targino, A. C., de Toloto, M., O., Segersson, D., Parra, Á., et al. (2019). Modelling urban cyclists’ exposure to black carbon particles using high spatiotemporal data: A statistical approach. Science of the Total Environment, 679, 115–125. https://doi.org/10.1016/j.scitotenv.2019.05.043.

    Article  CAS  Google Scholar 

  • Lai, H. C., Ma, H. W., Chen, C. R., Hsiao, M. C., & Pan, B. H. (2019). Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5. Atmospheric Environment, 212(April), 116–127. https://doi.org/10.1016/j.atmosenv.2019.05.038

  • Lim, C. C., Kim, H., Vilcassim, M. J. R., Thurston, G. D., Gordon, T., Chen, L. C., et al. (2019). Mapping urban air quality using mobile sampling with low-cost sensors and machine learning in Seoul, South Korea. Environment International, 131(March), 105022. https://doi.org/10.1016/j.envint.2019.105022

    Article  CAS  Google Scholar 

  • Liu, M., Peng, X., Meng, Z., Zhou, T., Long, L., & She, Q. (2019). Spatial characteristics and determinants of in-traffic black carbon in Shanghai, China: Combination of mobile monitoring and land use regression model. Science of the Total Environment, 658, 51–61. https://doi.org/10.1016/j.scitotenv.2018.12.135

    Article  CAS  Google Scholar 

  • Lopez-Reyes, A., Orozco-Rivera, G., Acuna-Askar, K., Villarreal-Chiu, J. F., & Alfaro-Barbosa, J. M. (2016). Characterization of atmospheric black carbon in particulate matter over the Monterrey metropolitan area, Mexico, using scanning electron microscopy. Air Quality, Atmosphere and Health, 9(3), 223–229. https://doi.org/10.1007/s11869-015-0328-5

    Article  CAS  Google Scholar 

  • Messier, K. P., Chambliss, S. E., Gani, S., Alvarez, R., Brauer, M., Choi, J. J., et al. (2018). Mapping air pollution with Google Street View Cars: Efficient approaches with mobile monitoring and land use regression. Environmental Science and Technology, 52(21), 12563–12572. https://doi.org/10.1021/acs.est.8b03395

    Article  CAS  Google Scholar 

  • Minet, L., Liu, R., Valois, M. F., Xu, J., Weichenthal, S., & Hatzopoulou, M. (2018). Development and comparison of air pollution exposure surfaces derived from on-road mobile monitoring and short-term stationary sidewalk measurements. Environmental Science and Technology, 52(6), 3512–3519. https://doi.org/10.1021/acs.est.7b05059

    Article  CAS  Google Scholar 

  • Minguillón, M. C., Campos, A. A., Cárdenas, B., Blanco, S., Molina, L. T., & Querol, X. (2014). Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign. Atmospheric Environment, 88, 320–329. https://doi.org/10.1016/j.atmosenv.2013.09.032

    Article  CAS  Google Scholar 

  • Paas, B., Stienen, J., Vorländer, M., & Schneider, C. (2017). Modelling of urban near-road atmospheric PM concentrations using an artificial neural network approach with acoustic data input. Environments, 4(2), 26. https://doi.org/10.3390/environments4020026

    Article  Google Scholar 

  • Parvez, F., & Wagstrom, K. (2019). A hybrid modeling framework to estimate pollutant concentrations and exposures in near road environments. Science of the Total Environment, 663, 144–153. https://doi.org/10.1016/j.scitotenv.2019.01.218

    Article  CAS  Google Scholar 

  • Qiu, Z., Wang, W., Zheng, J., & Lv, H. (2019). Exposure assessment of cyclists to UFP and PM on urban routes in Xi’an, China. Environmental Pollution, 250, 241–250. https://doi.org/10.1016/j.envpol.2019.03.129

    Article  CAS  Google Scholar 

  • Rrecaj, A. A., Alimehaj, V., Malenkovska, M., & Mitrovski, C. (2021). An improved ctm model for urban signalized intersections and exploration of traffic evolution. Civil Engineering Journal (Iran), 7(2), 357–375. https://doi.org/10.28991/cej-2021-03091659

  • Sanchez, M., Ambros, A., Milà, C., Salmon, M., Balakrishnan, K., Sambandam, S., et al. (2018). Development of land-use regression models for fine particles and black carbon in peri-urban South India. Science of the Total Environment, 634, 77–86. https://doi.org/10.1016/j.scitotenv.2018.03.308

    Article  CAS  Google Scholar 

  • Saraswat, A., Apte, J. S., Kandlikar, M., Brauer, M., Henderson, S. B., & Marshall, J. D. (2013). Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi, India. Environmental Science and Technology, 47(22), 12903–12911. https://doi.org/10.1021/es401489h

    Article  CAS  Google Scholar 

  • Sevik, H., Cetin, M., Ozel, H. B., Ozel, S., & Zeren Cetin, I. (2020). Changes in heavy metal accumulation in some edible landscape plants depending on traffic density. Environmental Monitoring and Assessment, 192(2). https://doi.org/10.1007/s10661-019-8041-8

  • Shairsingh, K. K., Jeong, C. H., & Evans, G. J. (2019). Transboundary and traffic influences on air pollution across two Caribbean islands. Science of the Total Environment, 653, 1105–1110. https://doi.org/10.1016/j.scitotenv.2018.11.034

    Article  CAS  Google Scholar 

  • Shekarrizfard, M., Faghih-Imani, A., Tetreault, L. F., Yasmin, S., Reynaud, F., Morency, P., et al. (2017). Modelling the spatio-temporal distribution of ambient nitrogen dioxide and investigating the effects of public transit policies on population exposure. Environmental Modelling and Software, 91, 186–198. https://doi.org/10.1016/j.envsoft.2017.02.007

    Article  Google Scholar 

  • Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., et al. (2013). The changing paradigm of air pollution monitoring. Environmental Science and Technology, 47(20), 11369–11377. https://doi.org/10.1021/es4022602

    Article  CAS  Google Scholar 

  • Souza, D. Z., Vasconcellos, P. C., Lee, H., Aurela, M., Saarnio, K., Teinilä, K., & Hillamo, R. (2014). Composition of PM2.5 and PM10 collected at Urban Sites in Brazil. Aerosol and Air Quality Research, 14(1), 168–176. https://doi.org/10.4209/aaqr.2013.03.0071

  • Tobías, A., Rivas, I., Reche, C., Alastuey, A., Rodríguez, S., Fernández-Camacho, R., et al. (2018). Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. Environment International, 111(October 2017), 144–151. https://doi.org/10.1016/j.envint.2017.11.015

  • Van den Bossche, J., De Baets, B., Verwaeren, J., Botteldooren, D., & Theunis, J. (2018). Development and evaluation of land use regression models for black carbon based on bicycle and pedestrian measurements in the urban environment. Environmental Modelling and Software, 99, 58–69. https://doi.org/10.1016/j.envsoft.2017.09.019

    Article  Google Scholar 

  • Van den Hove, A., Verwaeren, J., Van den Bossche, J., Theunis, J., & De Baets, B. (2020). Development of a land use regression model for black carbon using mobile monitoring data and its application to pollution-avoiding routing. Environmental Research, 183(November 2018), 108619. https://doi.org/10.1016/j.envres.2019.108619

  • Vette, A., Burke, J., Norris, G., Landis, M., Batterman, S., Breen, M., et al. (2013). The Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS): Study design and methods. Science of the Total Environment, 448, 38–47. https://doi.org/10.1016/j.scitotenv.2012.10.072

    Article  CAS  Google Scholar 

  • Wang, A., Fallah-Shorshani, M., Xu, J., & Hatzopoulou, M. (2016). Characterizing near-road air pollution using local-scale emission and dispersion models and validation against in-situ measurements. Atmospheric Environment, 142(April), 452–464. https://doi.org/10.1016/j.atmosenv.2016.08.020

    Article  CAS  Google Scholar 

  • Weichenthal, S. (2012). Selected physiological effects of ultrafine particles in acute cardiovascular morbidity. Environmental Research, 115, 26–36. https://doi.org/10.1016/j.envres.2012.03.001

    Article  CAS  Google Scholar 

  • Weichenthal, S., Farrell, W., Goldberg, M., Joseph, L., & Hatzopoulou, M. (2014). Characterizing the impact of traffic and the built environment on near-road ultrafine particle and black carbon concentrations. Environmental Research, 132, 305–310. https://doi.org/10.1016/j.envres.2014.04.007

    Article  CAS  Google Scholar 

  • Weichenthal, S., Ryswyk, K. V., Goldstein, A., Bagg, S., Shekkarizfard, M., & Hatzopoulou, M. (2016). A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach. Environmental Research, 146, 65–72. https://doi.org/10.1016/j.envres.2015.12.016

    Article  CAS  Google Scholar 

  • Weichenthal, S., Van Ryswyk, K., Kulka, R., Sun, L., Wallace, L., & Joseph, L. (2015). In-vehicle exposures to particulate air pollution in Canadian Metropolitan areas: The urban transportation exposure study. Environmental Science and Technology, 49(1), 597–605. https://doi.org/10.1021/es504043a

    Article  CAS  Google Scholar 

  • World Bank. (2013). Cairo traffic congestion study : final report. World Bank. Washington, DC. https://openknowledge.worldbank.org/handle/10986/18735

  • World Bank. (2019). World Bank urban population Middle East and North Africa Data. https://www.worldbank.org/en/region/mena

  • Xu, J., Wang, A., & Hatzopoulou, M. (2016). Investigating near-road particle number concentrations along a busy urban corridor with varying built environment characteristics. Atmospheric Environment, 142. https://doi.org/10.1016/j.atmosenv.2016.07.041

  • Xu, J., Wang, A., Schmidt, N., Adams, M., & Hatzopoulou, M. (2020). A gradient boost approach for predicting near-road ultrafine particle concentrations using detailed traffic characterization. Environmental Pollution, 265, 114777. https://doi.org/10.1016/j.envpol.2020.114777

    Article  CAS  Google Scholar 

  • Zaidan, M. A., Wraith, D., Boor, B. E., & Hussein, T. (2019). Bayesian proxy modelling for estimating black carbon concentrations using white-box and black-box models. Applied Sciences (switzerland), 9(22), 1–18. https://doi.org/10.3390/APP9224976

    Article  Google Scholar 

  • Zhang, L., Shen, F., Gao, J., Cui, S., Yue, H., Wang, J., et al. (2020). Characteristics and potential sources of black carbon particles in suburban Nanjing, China. Atmospheric Pollution Research, 11(5), 981–991. https://doi.org/10.1016/j.apr.2020.02.011

    Article  CAS  Google Scholar 

  • Zhang, Q., Ning, Z., Shen, Z., Li, G., Zhang, J., Lei, Y., et al. (2017). Variations of aerosol size distribution, chemical composition and optical properties from roadside to ambient environment: A case study in Hong Kong, China. Atmospheric Environment, 166, 234–243. https://doi.org/10.1016/j.atmosenv.2017.07.030

    Article  CAS  Google Scholar 

  • Zhao, P., Dong, F., Yang, Y., He, D., Zhao, X., Zhang, W., et al. (2013). Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China. Atmospheric Environment, 71, 389–398. https://doi.org/10.1016/j.atmosenv.2013.02.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the IDRC (International Development Research Centre), particularly Dr. Raed Sharif (Technology and Innovation Officer in the MENA Region). The authors would also like to deeply acknowledge the tireless efforts of the research team from the Access to Knowledge for Development (A2k4D) Centre, at the American University of Cairo for their valuable feedback and comments throughout the development of the project, led by Prof. Nagle Rizk (Professor of Economics) and Ms. Nancy Salem (Senior Research Officer). Additionally, the data collection team from SETS North Africa, led by Eng. Ahmed Adham, and the modelling efforts of Engr. Abdelrahman Samaha shall be acknowledged.

Funding

The research was supported by the Canadian International Development Research Centre (IDRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam Abdelgawad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaat, H., Xu, J., Hatzopoulou, M. et al. Mobile monitoring and spatial prediction of black carbon in Cairo, Egypt. Environ Monit Assess 193, 587 (2021). https://doi.org/10.1007/s10661-021-09351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09351-0

Keywords

Navigation