Skip to main content

Advertisement

Log in

Evaluation of flood risk analyses with AHP, Kriging, and weighted sum models: example of Çapakçur, Yeşilköy, and Yamaç microcatchments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study aims to use the Bingol city center and agricultural plain as a base in future flood management plans and scenarios through flood modeling. In accordance with this purpose, the precipitation map of the catchment was prepared using the Kriging method by assigning values, with the Schreiber formula. Then, the slope, aspect, distance to the stream, land use, geology, soil, and precipitation maps were classified according to the analytical hierarchy process, and consistency indices and consistency ratios were calculated; thus, the factors affecting the flood were ranked as precipitation (CI 0.324), distance to the stream (CI 0.207), slope (CI 0.168), geology (CI 0.101), soil (CI 0.091), land use (CI 0.087), and aspect (CI 0.022). In the last step, consistency indices calculated by the AHP method were superposed on the weighted sum method, and then flood risk analysis was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Abtew, W., Obeysekera, J., & Shih, G. (1993). Spatial analysis for monthly rainfall in south Florida. Water Resources Bulletin, 29, 179–188.

    Article  Google Scholar 

  • Apel, H., Aronica, G. T., Kreibich, H., & Thieken, A. H. (2009). Flood risk analysis-how detailed do we need to be. Natural Hazards, 49, 79–98.

    Article  Google Scholar 

  • Ardel, A., Kurter, A., & Dönmez, Y. (1969). Klimatoloji Tatbikatları. İstanbul Üniversitesi, Edebiyat Fakültesi, Coğrafya Enstitüsü Yayınları, İstanbul, Türkiye.

  • Başkan, O. (2004). Gölbaşı Yöresi Topraklarının Mühendislik, Fiziksel Özellik İlişkilerinde Jeoistatistik Uygulaması, Doktora Tezi, A. Ü., Fen Bilimleri Enstitüsü, Ankara.

  • Bates, B. C. (2008). Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change. Geneva: IPCC Secretariat.

  • Belediyesi, B. (2021). İlimiz Coğrafi, Nüfus ve Genel Bilgileri, Access Link: https://www.bingol.bel.tr/sehrimiz.php (Access on: 05.02.2021)

  • Bostan, P. (2017). Basic Kriging Methods in Geostatistics. Yuzuncu Yil University Journal of Agricultural Sciences, 27(1), 10–20.

    Google Scholar 

  • Bradford, R. A., O’Sullivan, J. J., van der Craats, I. M., Keywkow, J., Rotko, P., Aaltonen, J., et al. (2012). Risk perception-issues for flood management in Europe. Natural Hazards and Earth System Sciences, 12, 2299–2309.

    Article  Google Scholar 

  • Brakenridge, G. R., Syvitski, J. P. M., Overeem, I., Higgins, S. A., Kettner, A. J., Stewart-Moore, J. A., & Wasterhoff, R. (2013). Global Mapping of Storm Surges, 2002–present and the assessment of coastal vulnerability. Natural Hazards, 66(3), 1295–1312.

    Article  Google Scholar 

  • ÇEM. (2020). Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü, Bingöl İli Solhan İlçesi Arakonak Beldesi Yukarı Havza Sel Kontrol Projesi, Ankara, Türkiye.

  • Cressie, N. A. C. (1993). Statistics for Spatial Data, revised ed.Wiley, New York, EUA.

  • Demir, Y., & Mirici, E. M. (2020). Effect of land use and topographic factors on soil organic carbon content and mapping of organic carbon distribution using regression kriging method. Carpathian Journal of Earth and Environmental Sciences, 15(2), 311–322.

    Article  Google Scholar 

  • Deutsch, C. V., & Journel, A. G. (1992). GSLIB Geostatistical Software Library and User’s Guide. Oxford University Press.

    Google Scholar 

  • EM-DAT. (2021). The OFDA/CRED International Disaster Database, Access Link: http://www.emdat.be/ Universit´E Catholique De Louvain, Brussels, Belgium. (Access on: 04.02.2021).

  • FISRWG. (1998). Stream Corridor Restoration: Principles, Processes, and Practices. By the Federal Interagency Stream Restoration Working Group.

  • Franks, S. W., & Kuczera, G. (2002). Flood frequency analysis: Evidence and implications of secular climate variability. Water Resources Research, 38(5), 1062–1068.

    Article  Google Scholar 

  • Hammitt, J. K., & Shlyakhter, A. I. (1999). The expected value of information and the probability of surprise. Risk Analysis, 19(1), 135–152.

    Google Scholar 

  • Hardmeyer, K., & Spencer, M. A. (2007). Bootstrap methods: Another look at the jackknife and geographic information systems to assess flooding problems in an urban watershed In Rhode Island. Environmental Manager, 39, 563–574.

    Google Scholar 

  • Hepbilgin, B., & Koç, T. (2018). Bölgesel Sıcaklık ve Yağış Verilerine Göre Kazdağı ve Yakın Çevresinin İkliminde Öngörülen Değişiklikler (2000–2099). Marmara Coğrafya Dergisi, 37, 253–270.

    Article  Google Scholar 

  • Hilty, J. A., Lidicker, W. Z., & Merelender, A. M. (2006). Coridor ecology: The science and practise of linking landscapers for biodiversity conservation. Island Press.

    Google Scholar 

  • Hornbeck, J. W., & Swank, W. T. (1992). Watershed ecosystem analysis as a basis for multiple-use management of eastern forests. Ecological Applications, 2(3), 238–247.

    Article  Google Scholar 

  • Inal, C. and Yigit, C.Ö. (2003) Jeodezik uygulamalarda kriging enterpolasyon yönteminin kullanilabilirligi, TUJK 2003 Yili Bilimsel Toplantisi Cografi Bilgi Sistemleri ve Jeodezik Aglar Çalistayi 24-25-26 Eylül, Konya.

  • İnal, C., Turgut, B., & Yiğit, C. Ö. (2002). Lokal Alanlarda Jeoit Ondülasyonlarının Belirlenmesinde Kullanılan Enterpolasyon Yöntemlerinin Karşılaştırılması. Selçuk Üniversitesi Jeodezi ve Fotogrametri Mühendisliği Öğretiminde 30. Yıl Sempozyumu, 16–18 Ekim 2002, Konya.

  • Işık, F., Bahadır, M., & Çağlak, S. (2018). Artvin İlinde Yağışın Mekansal Dağılışı Üzerine Bir Deneme, Schreiber Formülü. Uluslararsı Artvin Sempozyumu, 18–20 Ekim 2018, Artvin, Türkiye.

  • Kay, A. L., Crooks, S. M., Pall, P., & Stone, D. A. (2011). Attribution of autumn/winter 2000 flood risk in England to anthropogenic climate change: A catchment-based study. Journal of Hydrology, 406, 97–112.

    Article  Google Scholar 

  • Kiem, A. S., Franks, S. W., & Kuczera, G. (2003). Multi-decadal variability of flood risk. Geophysical Research Letters, 30(2), 1035–1039.

    Article  Google Scholar 

  • Knotters, M., Heuvelink, G. B. M., Hoogland, T., & Walvoort, D. J. J. (2010). A disposition of interpolation techniques, Wageningen Statutory Research Tasks Unit for Nature and the Environment. WOT-workdocument, p.190.

  • Kron, W. (1999). Reasons for the increase in natural catastrophes: the development of exposed areas. In: Topics 2000: Natural Catastrophes – The Current Position. Munich: Munich Reinsurance Company: 82–94.

  • Kron, W. (2009). Flood risk=hazard-values-vulnerability. Water International, 30(1), 58–68.

    Article  Google Scholar 

  • Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., et al. (2014). Flood risk and climate change: Global and regional perspectives. Hydrological Sciences Journal, 59(1), 1–28.

    Article  Google Scholar 

  • Malczewski, J., & Claus, R. (2015). Multicriteria decision analysis in geographic information science. Springer.

    Book  Google Scholar 

  • Marler, T. R., & Arora, J. S. (2009). The weighted sum method for multi-objective optimization: New insights. Structural and Multidisciplinary Optimization, 41(6), 853–862.

    Article  Google Scholar 

  • Maturi, A. D., Lawal, D. U., Yusof, K. W., Hashim, M. A., & Balogun, A. L. (2014). Spatial analytic hierarchy process model for flood forecasting: An integrated approach. Earth and Environmental Science, 20(2014), 1–7.

    Google Scholar 

  • Merz, B., & Thieken, A. H. (2004). Flood risk analysis: concepts and challenges. O¨ Sterreichische Wasser Und Abfallwirtschaft, 56(3–4): 27–34.

  • Merz, B., & Thieken, A. H. (2009). Flood risk curves and uncertainty bounds. Natural Hazards, 2009(51), 437–458.

    Article  Google Scholar 

  • Merz, B., Hall, J., Disse, M., & Schumann, A. (2010). Fluvial flood risk management in a changing world. Natural Hazards and Earth System Sciences, 10, 509–527.

    Article  Google Scholar 

  • Merz, B., Thieken, A., H. & Gocht, M. (2006). Flood risk mapping at the local scale: concepts and challenges. Flood Risk Management in Europe, Chapter 13: 231–251, Springer.

  • MGM. (2021a). İllerimize Ait Genel İstatistik Verileri. Access Link: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=BINGOL (Access on: 05.02.2021)

  • MGM. (2021b). Meteorolojik Karakterli doğal Afetler, Sel ve Taşkınlar. Access link: http://www1.mgm.gov.tr/arastirma/dogal-afetler.aspx?s=taskinlar (Access on: 05.02.2021)

  • Odum, E. P., & Barrett, G. W. (2008). Ekolojinin Temel İlkeleri. (Ed: Işık K), Palme Yayıncılık, Ankara.

  • Peduzzi, P. (2011). Preview Global Risk Data Platform, UNEP/GRID Geneva, UNISDR, World Bank. Access Link: http://preview.grid.unep.chindex.php?preview=tools&cat=1&lang=eng (Access on: 05.02.2021).

  • Peduzzi, P., Dao, H., Herold, C., & Mouton, R. (2009). Assessing global exposure and vulnerability Towards Natural Hazards: The Disaster Risk Index. Natural Hazards and Earth System Sciences, 9, 1149–1159.

    Article  Google Scholar 

  • Re, M. (1997). Flooding and insurance. Munich: Munich Reinsurance Company.

  • Resendiz-Carrillo, D., & Lave, L. B. (1990). Evaluating dam safety retrofits with uncertain benefits: The case of Mohawk Dam. Water Resource Research, 26(5), 1093–1098.

    Article  Google Scholar 

  • Saaty, T. L. (1982). Deecision making for leaders. Lifetime Learning Publications.

    Google Scholar 

  • Saaty, T. L. (2000). Fundamentals of decision making and priority theory with the analytic hierarchy process. Kluwer Academic Publishers.

    Google Scholar 

  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International of Journal Services Sciences, 1, 83–98.

    Article  Google Scholar 

  • Schanze, J. (2006). Flood risk management-a basic framework. Hazards, Vulnerability and Mitigation Measures. Chapter 1: 1–20, Springer.

  • Seejata, K., Yodying, A., Wongthadam, T., Mahavik, N., & Tantanee, S. (2018). Assessment of flood hazard areas using analytical hierarchy process over the Lover Yom Basin Sukhothai Province. Precedia Engineering, 212(2018), 340–347.

    Article  Google Scholar 

  • Sinha, R., Bapalu, G. V., Singh, L. K., & Rath, B. (2008). Flood risk analysis in the Kosi river basin, North Bihar using multi-parametric approach of analytical hierarchy process (AHP). Journal of the Indian Society of Remote Sensing, 36(2008), 335–349.

    Article  Google Scholar 

  • Syvitski, J. P. M., & Brakenridge, G. R. (2013). Causation and avoidance of catastrophic flooding along the Indus River Pakistan. GSA Today, 23(1), 4–10.

    Article  Google Scholar 

  • Şen, G., & Güngör, E. (2018). Endüstriyel Ağaçlandırmalar İçin En Uygun Tür Seçiminde Analitik Hiyerarşi Süreci Yönteminin Kullanılması: Kastamınu İli Örneği. Turkish Journal of Forestry, 19(1), 63–75.

    Google Scholar 

  • Takeuchi, K. (2001). Increasing vulnerability to extreme floods and societal needs of hydrological forecasting. Hydrology Science Journal, 46(6), 869–881.

    Article  Google Scholar 

  • Taylan, E. D., & Damçayırı, D. (2016). Isparta Bölgesi Yağış Değerlerinin IDW ve Kriging Enterpolasyon Yöntemleri İle Tahmini. İMO Teknik Dergi, 459, 7551–7559.

    Google Scholar 

  • Thieken A., H., Kreibich, H., & Merz, B. (2006). Improved modelling of flood losses in private households. In:Kundzewicz Z, Hattermann F (eds) Natural systems and global change. Polish Academy of Sciences and Potsdam Institute of Climate Impact Research, Poznan, pp 142–150.

  • Timor, M. (2004). Şehiriçi Alışveriş Merkezi Yer Seçimi Faktörlerinin Analitik Hiyerarşi Prosesi Yardımıyla Sıralanması. İ. Ü. İşletme İktisadi Enstitüsü-Yönetim Dergisi, 49, 3–18.

    Google Scholar 

  • Timor, M. (2011). Analitik Hiyerarşi Prosesi. Türkmen Kitabevi, Beyazıt, İstanbul.

  • Triantaphyllou, E. (2000). Multi-cretiteria decision making: A comparative study. Kluwer Academic Publishers.

    Book  Google Scholar 

  • Tülek, B., & Atik, M. (2017). Çankırı, Ilgaz Bölgesi Devrez Alt Havzası Örneğinde Peyzaj Karakter Alanlarının Belirlenmesi. Mediterranean Agriultural Sciences, 30(3), 197–204.

    Article  Google Scholar 

  • UNISDR. (2021). United Nations international strategy for disaster reduction. Access Link: http://www.unisdr.org (Access on: 04.02.2021).

  • URL.1 Access Link: https://www.bingolonline.com/haber/sel-yikti-gecti-58762.html (Access on: 05.02.2021)

  • URL.2 Access Link: http://beyazgazete.com/fotogaleri/yasam-11 (Access on: 04.02.2021)

  • URL.3 Access Link: https://www.sondakika.com/haber/haber-selin-bingol-e-faturasi-18-milyon-lira-9530135/ (Access on: 05.02.2021)

  • URL.4 Access Link: https://www.memurlar.net/haber/660919/bingol-de-saganak-nedeniyle-araclar-sular-altinda-kaldi.html (Access on: 03.02.2021)

  • White, W. R. (2000). Water in rivers: flooding, a contribution to the world water vision. IAHR, UK.

  • Yaprak, S., & Arslan, E. (2008). Kriging Yöntemi ve Geoit Yüksekliklerinin Enterpolasyonu. Jeodezi, Jeoinformasyon ve Arazi Yönetimi Dergisi, 2008(1), 98: 36–42.

  • Yıldırım, E., & Ortaçeşme, V. (2016). Assesment of landscape change in Manavgat river basin in the contex of landscape protection, planning and management. Mediterranean Agriculturel Science, 29(2), 65–72.

    Google Scholar 

  • Yıldırım, E., Yılmaz, T., & Benliay, A. (2013). Peyzaj planlamada Akarsu Ekolojisinin Önemi. Türk Bilimsel Derlemeler Dergisi, 6(1), 51–54.

    Google Scholar 

Download references

Funding

This study was organized from the project numbered 120O150 “Landscape Characteristics Based Integrated Catchment Management Models: Example of Capakcur, Yesilkoy, Yamac Catchments in Bingol” supported by TUBITAK 1002 Short Term R&D Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alperen Meral.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meral, A., Eroğlu, E. Evaluation of flood risk analyses with AHP, Kriging, and weighted sum models: example of Çapakçur, Yeşilköy, and Yamaç microcatchments. Environ Monit Assess 193, 505 (2021). https://doi.org/10.1007/s10661-021-09282-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09282-w

Keywords

Navigation