Skip to main content

Advertisement

Log in

Metal bioavailability, toxicity, and ecological risk due to sediments of a lately rehabilitated lake (Mariut, Egypt)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sediments from Lake Mariut, Egypt, after its rehabilitation, and its anoxic diverted polluted drains were subjected to five sequential steps to define different geochemical fractions of eight studied metals. Results cleared out that 30–50% of its total Cd and total Co contents are easily bioavailable with a high-risk assessment code (RAC) to enter the food chain in the lake basin. Whereas Cu and Fe are safe and the remaining studied metals, i.e., Mn, Zn, Pb, and Cr are of medium risk for the environment. Individual contamination factor (ICF) is high (> 6) for all the studied metals except for Fe and Cu which are tightly held in sediments confirming their safeness to biota. Cadmium accounted for > 94% of the total risk in the study area. Metal pollution loading (MPL) from the sediments was found in the order: Fe > Mn > Zn > Pb > Cu > Cr > Co > Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

∑TU:

Sum of all toxicity units

EWWTP:

East wastewater treatment plant

GCF:

Global contamination factor

ICF:

Individual contamination factor

LM:

Lake Mariut

LMMB:

Lake Mariut Main Basin

MPL:

Metal pollution loading

MRI:

Modified Risk Index

OC:

Organic carbon

PEC:

Probable effect concentration

QD:

Qalaa drain

RAC:

Risk Assessment Code

RI:

Potential ecological risk

TEC:

Threshold effect concentration

TRI:

Toxic Risk Index

TU:

Toxic unit

UD:

Umum Drain

UDds:

Downstream of Umum Drain

WWWTP:

West wastewater treatment plant

References

  • Abaza, K. M., El-Rayis, O. A., & El-Sabrouti, M. A. (2009). Study of the ecological conditions of Mariut Lake Main Basin in relation to their suitability for fish living in the basin. Egyptian Journal of Aquatic Research, 35(1), 119–130.

    CAS  Google Scholar 

  • Abdallah, M. A. M. (2003). The Chemical Changes in Lake Maryout after the construction of the two Waste Treatment Plants. Alexandria University.

  • Abdallah, M. A. M. (2007). Speciation of trace metals in coastal sediments of El-Mex Bay South Mediterranean Sea-West of Alexandria (Egypt). Environmental Monitoring and Assessment, 132(1–3), 111–123. https://doi.org/10.1007/s10661-006-9507-z.

    Article  CAS  Google Scholar 

  • Abdallah, N. A. (2013). Study of pollution load in Edku coastal lagoon’s sediments. Alexandria University.

  • Abdel Ghani, S., El Zokm, G., Shobier, A., Othman, T., & Shreadah, M. (2013). Metal pollution in surface sediments of Abu-Qir Bay and Eastern Harbour of Alexandria, Egypt. Egyptian Journal of Aquatic Research, 39, 1–12. https://doi.org/10.1016/j.ejar.2013.03.001

    Article  Google Scholar 

  • Consani, S., Ianni, M. C., Cutroneo, L., Dinelli, E., Carbone, C., & Capello, M. (2019). Environmental implications of metal mobility in marine sediments receiving input from a torrent affected by mine discharge. Marine Pollution Bulletin, 139(January 2018), 221–230. https://doi.org/10.1016/j.marpolbul.2018.12.050

  • Cunningham, P. A., Sullivan, E. E., Everett, K. H., Kovach, S. S., Rajan, A., & Barber, M. C. (2019). Assessment of metal contamination in Arabian/Persian Gulf fish: A review. Marine Pollution Bulletin, 143(March), 264–283. https://doi.org/10.1016/j.marpolbul.2019.04.007

    Article  CAS  Google Scholar 

  • Dong, C., Zhang, W., Ma, H., Feng, H., Lu, H., Dong, Y., & Yu, L. (2014). A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta. Science of the Total Environment, 476–477, 368–377. https://doi.org/10.1016/j.scitotenv.2014.01.020

    Article  CAS  Google Scholar 

  • Duodu, G. O., Goonetilleke, A., & Ayoko, G. A. (2016). Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environmental Pollution, 219, 1077–1091. https://doi.org/10.1016/j.envpol.2016.09.008

    Article  CAS  Google Scholar 

  • Duodu, G. O., Goonetilleke, A., & Ayoko, G. A. (2017). Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia. Marine Pollution Bulletin, 117(1–2), 523–531. https://doi.org/10.1016/j.marpolbul.2017.02.017

    Article  CAS  Google Scholar 

  • El-Rayis, O. A. (2005). Impact of man’s activities on a closed fishing-lake, Lake Maryout in Egypt, as a case study. Mitigation and Adaptation Strategies for Global Change, 10, 145–157.

    Article  Google Scholar 

  • El-Rayis, O. A., Hinckely, D., & El-Nady, F. E. (1997). Levels of silver, arsenic, antimony, mercury and other seven metals in surface sediments and their possible effect-ranges in lake Maryout, Egypt. In Proceedings of the 7th International Conference on: ̋Environmental Protection Is A Must̏ (p. 793). Alexandria, Egypt, Organized by N.I.O.F and I.S.A.

  • El-Rayis, O.A., Hemada, I. E., & Shaaban, N. A. (2010). Lake Mariut (Alexandria, Egypt) pollution problem, cause and suggested solution/s. In Second International Workshop on research in shallow marine and fresh water systems, Milazzo (p. 90).

  • El-Rayis, O. A., Hemeda, E. I., & Shaaban, N. A. (2019). Steps for rehabilitation of a Lake suffering from intensive pollution; Lake Mariut as a case study. Egyptian Journal of Aquatic Biology and Fisheries, 23(2), 331–345. https://doi.org/10.21608/ejabf.2019.31838

    Article  Google Scholar 

  • Gao, L., Wang, Z., Li, S., & Chen, J. (2018). Bioavailability and toxicity of trace metals (Cd, Cr, Cu, Ni, and Zn) in sediment cores from the Shima River, South China. Chemosphere, 192, 31–42. https://doi.org/10.1016/j.chemosphere.2017.10.110

    Article  CAS  Google Scholar 

  • Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Petrology, 44(1), 249–253.

    CAS  Google Scholar 

  • Herut, B., & Sandler, A. (2006). Normalization methods for pollutants in marine sediments: Review and recommendations for the Mediterranean. IOLR Report H18/2006 Submitted to UNEP/MAP. http://www.sednet.org/download/0604_herut_and_sandler_report.pdf

  • Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Hoque, M. F. (2015). Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environmental Earth Sciences, 73(4), 1837–1848. https://doi.org/10.1007/s12665-014-3538-5

    Article  CAS  Google Scholar 

  • Ji, Z., Zhang, Y., Zhang, H., Huang, C., & Pei, Y. (2019). Fraction spatial distributions and ecological risk assessment of heavy metals in the sediments of Baiyangdian Lake. Ecotoxicology and Environmental Safety, 174(March), 417–428. https://doi.org/10.1016/j.ecoenv.2019.02.062

    Article  CAS  Google Scholar 

  • Jung, J. M., Choi, K. Y., Chung, C. S., Kim, C. J., & Kim, S. H. (2019). Fractionation and risk assessment of metals in sediments of an ocean dumping site. Marine Pollution Bulletin, 141(February), 227–235. https://doi.org/10.1016/j.marpolbul.2019.02.041

    Article  CAS  Google Scholar 

  • Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126(2), 225–233. https://doi.org/10.1016/S0269-7491(03)00191-X

    Article  CAS  Google Scholar 

  • Ke, X., Gui, S., Huang, H., Zhang, H., Wang, C., & Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175, 473–481. https://doi.org/10.1016/j.chemosphere.2017.02.029

    Article  CAS  Google Scholar 

  • Khalil, M. K., El Zokm, G. M., Fahmy, M. A., Said, T. O., & Shreadah, M. A. (2013a). Geochemistry of some major and trace elements in sediments of Edku and Mariut Lakes, North Egypt. World Applied Sciences Journal, 24(3), 282–294.

    CAS  Google Scholar 

  • Khalil, M. K. H., El Zokm, G. M., Fahmy, M. A., Said, T. O., & Shreadah, M. A. (2013b). Geochemistry of some major and trace elements in sediments of Edku and Mariut Lakes, North Egypt. World Applied Sciences Journal, 24(3), 282–294. https://doi.org/10.5829/idosi.wasj.2013.24.03.75115

    Article  CAS  Google Scholar 

  • Li, R., Tang, C., Li, X., Jiang, T., Shi, Y., & Cao, Y. (2019). Reconstructing the historical pollution levels and ecological risks over the past sixty years in sediments of the Beijiang River, South China. Science of the Total Environment, 649, 448–460. https://doi.org/10.1016/j.scitotenv.2018.08.283

    Article  CAS  Google Scholar 

  • Liu, H., Liu, G., Yuan, Z., Ge, M., Wang, S., Liu, Y., & Da, C. (2019). Occurrence, potential health risk of heavy metals in aquatic organisms from Laizhou Bay, China. Marine Pollution Bulletin, 140(January), 388–394. https://doi.org/10.1016/j.marpolbul.2019.01.067

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31. https://doi.org/10.1007/s002440010075

    Article  CAS  Google Scholar 

  • Marmolejo-Rodríguez, A. J., Prego, R., Meyer-Willerer, A., Shumilin, E., & Cobelo-García, A. (2007). Total and labile metals in surface sediments of the tropical river-estuary system of Marabasco (Pacific coast of Mexico): Influence of an iron mine. Marine Pollution Bulletin, 55(10–12), 459–468. https://doi.org/10.1016/j.marpolbul.2007.09.008

    Article  CAS  Google Scholar 

  • Masoud, M. S., Said, T. O., El, G., & Shreadah, M. A. (2012). Assessment of heavy metals contamination in surface sediments of the Egyptian Red Sea Coasts, 6(6), 44–58.

  • Matthai, C., & Birch, G. (2001). Detection of anthropogenic Cu, Pb and Zn in continental shelf sediments off Sydney, Australia - A new approach using normalization with cobalt. Marine Pollution Bulletin, 42(11), 1055–1063. https://doi.org/10.1016/S0025-326X(01)00068-6

    Article  CAS  Google Scholar 

  • Nazneen, S., Singh, S., & Raju, N. J. (2019). Heavy metal fractionation in core sediments and potential biological risk assessment from Chilika lagoon, Odisha state, India. Quaternary International, 507(December 2017), 370–388. doi:https://doi.org/10.1016/j.quaint.2018.05.011

  • Nowrouzi, M., Pourkhabbaz, A., & Rezaei, M. (2014). Sequential extraction analysis of metals in sediments from the Hara Biosphere Reserve of Southern Iran. Chemical Speciation and Bioavailability, 26(4), 273–277. https://doi.org/10.3184/095422914X14141630849689

    Article  CAS  Google Scholar 

  • Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanette, M., & Orio, A. (1985). Heavy metals speciation in the sediments of Northern Adriatic Sea. A new approach for environmental toxicity determination. In T. D. Lekkas (Ed.), Heavy Metals in the Environment (pp. 454–456).

  • Pradhanang, S. (2014). Distribution and fractionation of heavy metals in sediments of Karra. Journal of Institute of Science and Technology, 19(2), 123–128.

    Article  Google Scholar 

  • Qian, Y., Cheng, C., Feng, H., Hong, Z., Zhu, Q., Kolenčík, M., & Chang, X. (2020). Assessment of metal mobility in sediment, commercial fish accumulation and impact on human health risk in a large shallow plateau lake in southwest of China. Ecotoxicology and Environmental Safety, 194, 110346. https://doi.org/10.1016/j.ecoenv.2020.110346

    Article  CAS  Google Scholar 

  • Said, T. O., Farag, R. S., Younis, A. M., & Shreadah, M. A. (2006). Organotin species in fish and bivalves samples collected from the Egyptian Mediterranean Coast of Alexandria, Egypt. Bulletin of Environmental Contamination and Toxicology, 77(3), 451–458. https://doi.org/10.1007/s00128-006-1086-8

    Article  CAS  Google Scholar 

  • Saleem, M., Iqbal, J., & Shah, M. H. (2015). Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments - A case study from Mangla Lake, Pakistan. Environmental Nanotechnology, Monitoring and Management, 4, 27–36. https://doi.org/10.1016/j.enmm.2015.02.002

    Article  Google Scholar 

  • Shaaban, N. A. (2010). Studies on distribution of organic matter and nutrients in the lower reach of Qalaa and Umum Drains to control the organic pollution in Lake Mariut. MSc. thesis, Faculty of Science, Alexandria University: 331.

  • Shaaban, N. A. (2015). Study concentration level of some toxic metals in Lake Mariut and role of microbial detoxification. Alexandria University.

    Google Scholar 

  • Shokr, M. S., El Baroudy, A. A., Fullen, M. A., El-beshbeshy, T. R., Ramadan, A. R., Abd El Halim, A., et al. (2016). Spatial distribution of heavy metals in the middle nile delta of Egypt. International Soil and Water Conservation Research, 4(4), 293–303. https://doi.org/10.1016/j.iswcr.2016.10.003

    Article  Google Scholar 

  • Shreadah, M. A., Shobier, A. H., Ghani, S. A. A., El Zokm, G. M., & Said, T. O. (2015). Major ions anomalies and contamination status by trace metals in sediments from two hot spots along the Mediterranean Coast of Egypt. Environmental Monitoring and Assessment 187–280 https://doi.org/10.1007/s10661-015-4420-y

  • Shreadah, M. A., El-Rayis, O. A., Shaaban, N. A., & Hamdan, A. M. (2020). Water quality assessment and phosphorus budget of a lake (Mariut, Egypt) after diversion of wastewaters effluents. Environmental Science and Pollution Research, 27(21), 26786–26799. https://doi.org/10.1007/s11356-020-08878-y

    Article  CAS  Google Scholar 

  • Shreadah, M. A., Abdel Ghani, S. A., Hawash, H. B. I., Abd El Samie, A., & Ahmed, A. E. M. M. (2014). Organotin compounds in sediments of Northern Lakes, Egypt. Journal of Environmental Protection, 5(17), 1654–1666. https://doi.org/10.4236/jep.2014.517156

    Article  CAS  Google Scholar 

  • Soliman, N. F., El Zokm, G. M., & Okbah, M. A. (2018). Risk assessment and chemical fractionation of selected elements in surface sediments from Lake Qarun, Egypt using modified BCR technique. Chemosphere, 191, 262–271. https://doi.org/10.1016/j.chemosphere.2017.10.049

    Article  CAS  Google Scholar 

  • Soliman, N. F., Younis, A. M., & Elkady, E. M. (2019). An insight into fractionation, toxicity, mobility and source apportionment of metals in sediments from El Temsah Lake, Suez Canal. Chemosphere, 222, 165–174. https://doi.org/10.1016/j.chemosphere.2019.01.009

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. https://doi.org/10.1021/ac50043a017

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. Geological Society of America Bulletin, 72, 175–192.

    Article  CAS  Google Scholar 

  • Vangronsveld, J., & Cunningham, S. D. (1998). Metal-contaminated soils: In situ inactivation and phytorestoration.

  • Vogel, A. I. (1978). Textbook of quantitative inorganic analysis (4th ed.). William Clowes Limited Beccles and London.

    Google Scholar 

  • Wang, X. N., Gu, Y. G., Wang, Z. H., Ke, C. L., & Mo, M. S. (2018). Biological risk assessment of heavy metals in sediments and health risk assessment in bivalve mollusks from Kaozhouyang Bay, South China. Marine Pollution Bulletin, 133(May), 312–319. https://doi.org/10.1016/j.marpolbul.2018.05.059

    Article  CAS  Google Scholar 

  • Wu, B., Wang, G., Wu, J., Fu, Q., & Liu, C. (2014). Sources of heavy metals in surface sediments and an Ecological Risk Assessment from two adjacent plateau reservoirs. PLoS One, 9(7), e102101. https://doi.org/10.1371/journal.pone.0102101

    Article  Google Scholar 

  • Xu, Y., Wu, Y., Han, J., & Li, P. (2017). The current status of heavy metal in lake sediments from China: Pollution and ecological risk assessment. Ecology and Evolution, 7(14), 5454–5466. https://doi.org/10.1002/ece3.3124

    Article  Google Scholar 

  • Zhang, Z., Juying, L., Mamat, Z., & QingFu, Y. (2016). Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicology and Environmental Safety, 126, 94–101. https://doi.org/10.1016/j.ecoenv.2015.12.025

    Article  CAS  Google Scholar 

  • Zhao, S., Feng, C., Yang, Y., Niu, J., & Shen, Z. (2012). Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods. Journal of Hazardous Materials, 241–242, 164–172. https://doi.org/10.1016/j.jhazmat.2012.09.023

    Article  CAS  Google Scholar 

  • Zhu, H. N., Yuan, X. Z., Zeng, G. M., Jiang, M., Liang, J., Zhang, C., et al. (2012). Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Transactions of Nonferrous Metals Society of China (english Edition), 22(6), 1470–1477. https://doi.org/10.1016/S1003-6326(11)61343-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashwa A. Shaaban.

Ethics declarations

Ethical approval

Ethics required is approved.

Consent for publication

The authors certify that the publisher is permitted to publish this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Geochemical forms of metals in sediments of Lake Mariut (Egypt) were measured.

• Toxicity, mobility, and source of metals were evaluated using multiple approaches.

• Cadmium was easily bioavailable and accounted for > 94% of total risk in the study area.

• MPL in sediment was found in the order: Fe > Mn > Zn > Pb > Cu > Cr > Co > Cd.

• Most of all studied metals were in the non-detrital part, and Fe was mainly residual.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, N.A., Shreadah, M.A., El-Rayis, O.A. et al. Metal bioavailability, toxicity, and ecological risk due to sediments of a lately rehabilitated lake (Mariut, Egypt). Environ Monit Assess 193, 450 (2021). https://doi.org/10.1007/s10661-021-09226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09226-4

Keywords

Navigation