Skip to main content

Advertisement

Log in

Evaluating quality of soils formed on basement complex rocks in Kaduna State, northern Guinea savanna of Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A few investigations have been done regarding the soil quality index (SQI) for various locations, soil types, and states. Still, little has been reported regarding SQI for both surface and control sections, especially for the Northern Guinea Savanna of Nigeria. Due to the subsurface property pedogenic influence on soil function, it is crucial to assess SQI using surface and subsurface properties as both properties influence soil productivity. We investigated the potentials of choosing a minimum data set for soil quality indicators and assess soil quality (SQ), using both surface and entire soil pedon data for the soils on the basement complexes. Both additive and weighted soil quality indices and different scoring methods (linear and non-linear) were used in evaluating SQ. Out of the twenty-three soil properties subjected to PCA, eight indicators (TEB, clay, silt, K, EA, EC, BD, and Fe) were selected as the minimum data set (MDS). There was not much difference in the calculated soil quality using the non-linear additive (SQI-NLA), linear additive (SQI-LA), linear weighted (SQI-LW), and non-linear weighted (SQI-NLW) for the soils as they were all rated low (SQI < 0.55). The estimated SQI for the control section had relatively higher values than the surface soil, thus suggesting the need to incorporate both surface and entire soil profile properties in assessing SQ as both are important in integrating the relationship between soil properties and management goals which eventually provides complete information that affects the production of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data for this study are available within the manuscript.

Abbreviations

SQI:

Soil quality index

SQ:

Soil quality

TEB:

Total exchangeable base

EA:

Exchangeable acidity

EC:

Electrical conductivity

BD:

Bulk density

MDS:

Minimum data set

SQI-NLA:

Non-linear additive

SQI-LA:

Linear additive

SQI-LW:

Linear weighted

SQI-NLW:

Non-linear weighted

References

  • Abera, W., Assen, M., & Satyal, P. (2021). Synergy between farmers’ knowledge of soil quality change and scientifically measured soil quality indicators in Wanka watershed, northwestern highlands of Ethiopia. Environment, Development and Sustainability, 23(2), 1316–1334.

    Article  Google Scholar 

  • Abraham, J. S., Sripoorna, S., Dagar, J., Jangra, S., Kumar, A., Yadav, K., Singh, S., Goyal, A., Maurya, S., Gambhir, G., Toteja, R., Gupta, R., Singh, D. K., El-Serehy, H. A., AlMisned, F. A., Al-Farraj, S. A., Al-Rasheid, K. A., Maodaa, S. A., & Makhija, S. (2019). Soil ciliates of the Indian Delhi Region: Their community characteristics with emphasis on their ecological implications as sensitive bio-indicators for soil quality. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2019.04.03

  • Aboukila, E., & Abdelaty, E. (2017). Assessment of saturated soil paste salinity from 1:2.5 and 1:5 soil-water extracts for coarse textured soils. Alexandria Science Exchange Journal, 38(October-December), 722–732.

  • Abu-hashim, M., Elsayed, M., & Belal, A. -E. (2016). Effect of land-use changes and site variables on surface soil organic carbon pool at Mediterranean Region. Journal of African Earth Sciences, 114, 78–84.

    Article  CAS  Google Scholar 

  • Abuzaid, A., Abdellatif, A., & Fadl, M. (2021). Modeling soil quality in Dakahlia Governorate, Egypt using GIS techniques. The Egyptian Journal of Remote Sensing and Space Science, 24(2), 255–264. https://doi.org/10.1016/j.ejrs.2020.01.003

    Article  Google Scholar 

  • Acir, N., & Gunal, H. (2020). Soil quality of a cropland and adjacent natural grassland in an arid region. Carpathian Journal of Earth and Environmental Sciences. 15 (2): 275, 288.

  • Aizebeokhai, A. P., & Oyeyemi, K. D. (2018). Geoelectrical characterisation of basement aquifers: The case of Iberekodo, southwestern Nigeria. Hydrogeology Journal, 26(2), 651–664.

    Article  CAS  Google Scholar 

  • Akinola, O. O., Ghani, A. A., & James, E. (2021). Petrography and geochemical characterization of a granite batholith in Idanre Southwestern Nigeria. Sains Malaysiana, 50(2), 315–326.

    Article  CAS  Google Scholar 

  • Aliyu, J., Shobayo, A. B., Jimoh, I. A., & Yau, S. L. (2016). Landsuitability evaluation for irrigated tomato in Dakace, Galma Basin, North Western, Nigeria. Proceedings of 40th Annual Conference of Soil Science Society of Nigeria (SSSN), held at University of Calabar.

  • Amorim, H. C., Ashworth, A. J., Moore, P. A., Jr., Wienhold, B. J., Savin, M. C., Owens, P. R., Jagadamma, S., Carvalho, T. S., & Xu, S. (2020). Soil quality indices following long-term conservation pasture management practices. Agriculture, Ecosystems & Environment, 301, 107060.

    Article  CAS  Google Scholar 

  • Ande, O.T. (2010). Morphogenetic characterization of soils formed from basement complex rock in the humid tropical rainforest of Nigeria. Journal of Soil Science and Environmental Management, 1(6), 122 -126.

  • Andrews, S., Flora, C., Mitchell, J., & Karlen, D. (2003). Growers’ perceptions and acceptance of soil quality indices. Geoderma, 114(3–4), 187–213.

    Article  Google Scholar 

  • Andrews, S. S., & Carroll, C. R. (2001). Designing a soil quality assessment tool for sustainable agro ecosystem management. Ecological Applications 11, 1573–1585.

  • Andrews, S. S., Karlen, D., & Mitchell, J. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems & Environment, 90(1), 25–45.

    Article  Google Scholar 

  • Andrews, S. S., Karlen, D. L., & Cambardella, C. A. (2004). The soil management assessment framework: a quantitative soil quality evaluation meted. Soil Science Society of America Journal, 68, 1945–1962.

  • Azembouh, R. T., Nyong, P. A., Bernard, P., & Kfuban, Y. (2021). Characterization of agroforestry systems and their efectiveness in soil fertility enhancement in the south-west region of Cameroon. Current Research in Environmental Sustainability, 3.

  • Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernández-Clemente, R., Zhao, Y., Gaitán, J. J., Gross, N., Saiz, H., Maire, V., & Lehman, A. (2020). Global ecosystem thresholds driven by aridity. Science, 367(6479), 787–790.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., Pathak, H., & Pal, S. (2020). Climate Smart Agriculture: Concepts, Challenges, and Opportunities. Springer Nature.

  • Bjoern, A., Chandrakumar, C., Boulay, A. -M., Doka, G., Fang, K., Gondran, N., Hauschild, M. Z., Kerkhof, A., King, H., & Margni, M. (2020). Review of life-cycle based methods for absolute environmental sustainability assessment and their applications. Environmental Research Letters, 15(8), 083001.

    Article  Google Scholar 

  • Blake, G., & Hartge, K. (1986). Particle density. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 377–382.

  • Belal, A. A., El-Ramady, H. R., Mohamed, E. S., & Saleh, A. M. (2014). Drought risk assessment using remote sensing and GIS techniques. Arabian Journal Geoscience, 7 (1), 35–53.

  • Brejda, J. J., Moorman, T. B., Karlen, D. L., & Dao, T. H. (2000). Identification of regional soil quality factors and indicators I. Central and Southern High Plains. Soil Science Society of America Journal, 64(6), 2115–2124.

  • Bremner, J., & Mulvaney, C. (1982). Total nitrogen In: Page, AL, RH Miller, and DR Keeney (Eds). Methods of soil analysis. Part 2. American Society of Agronomy, Madison, WI USA, 595–624.

  • Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., & Mäder, P. (2018). Soil quality—A critical review. Soil Biology and Biochemistry, 120, 105–125.

    Article  CAS  Google Scholar 

  • Chen, R., Zhang, P., Wu, H., Wang, Z., & Zhong, Z. (2019). Prediction of shield tunneling-induced ground settlement using machine learning techniques. Frontiers of Structural and Civil Engineering, 13(6), 1363–1378.

    Article  Google Scholar 

  • Chen, Y. D., Wang, H. Y., Zhou, J. M., Xing, L., Zhu, B. S., Zhao, Y. C., & Chen, X. -Q. (2013). Minimum data set for assessing soil quality in farmland of Northeast China. Pedosphere, 23, 564–576.

    Article  CAS  Google Scholar 

  • Cherubin, M. R. (2016). Soil quality response to land-use change for sugarcane expansion in Brazil Universidade de São Paulo.

  • Chidowe, O., Haruna, H., & Oyinlola, E. (2019). Slope position and land use effect on select soil properties, quality and carbon stock in surface soils at Afaka Forest Area, Northern Guinea Savanna of Nigeria. Current Journal of Applied Science and Technology, 32(4), 1–13. https://doi.org/10.9734/cjast/2019/46375

    Article  CAS  Google Scholar 

  • de Paul Obade, V., & Lal, R. (2016). A standardized soil quality index for diverse field conditions. Science of the Total Environment, 541, 424–434.

    Article  CAS  Google Scholar 

  • Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. Defining Soil Quality for a Sustainable Environment, 35, 1–21.

    Google Scholar 

  • Eche, N. M., Amapu, I. Y., Bruns, M. A., Odunze, A. C. & Uyovbisere, E. O. (2014). Fertility management effects on soil physical and chemical properties under long-term maize cropping in an Alfisol in northern guinea savanna zone. Nigerian Journal of Soil Science, 24(1), 134-146.

  • Ekwok, S. E., Akpan, A. E., & Ebong, E. D. (2019). Enhancement and modelling of aeromagnetic data of some inland basins, southeastern Nigeria. Journal of African Earth Sciences, 155, 43–53.

    Article  Google Scholar 

  • FAO. (1979). Soil survey for irrigation. Soil Bulletin. No 42. FAO, Rome. 188 PP.

  • FAO. (2006). World Reference Base for Soil Resources 2006; A framework for international classification, correlation and communication. World Soil Resources Reports, 103, 128p.

    Google Scholar 

  • FAOSTAT. (2018). Production statistics (prodstat). Food and Agriculture Organization of the United Nations, Rome. [WWW Document]. http://www.fao.org/faostat/en/country/159

  • Fatihu, K. S., Maniyunda, L. M., & Awwal, A. Y. (2020). Assessment of soil properties under different land uses and their suitability for maize (Zea mays) production in Hunkuyi, northern Guinea savanna, Nigeria. Journal of agriculture and food security (Dujafs), 7(1).

  • Fei, R., Lin, Z., & Chunga, J. (2021). How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector. Land Use Policy, 103, 105300.

    Article  Google Scholar 

  • Gee G.W, B. J. W. (1986). Methods of soil analysis, part 1: Physical and mineralogical methods. Particle size analysis. In Klute, A. (eds). PP 320–376. (2nd Ed) https://doi.org/10.2136/sssabookser5.1.2ed.c15

  • Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B., Rosolem, R., & Rahman, S. (2021). GMD Perspective: The quest to improve the evaluation of groundwater representation in continental to global scale models. Geoscientific Model Development Discussions, 1–59.

  • Gong, L., Ran, Q., He, G., & Tiyip, T. (2015). A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang, China. Soil and Tillage Research146, 223-229.

  • Guimarães, R. M., Lamandé, M., Munkholm, L. J., Ball, B. C., & Keller, T. (2017). Opportunities and future directions for visual soil evaluation methods in soil structure research. Soil and Tillage Research, 173, 104–113.

    Article  Google Scholar 

  • Hassan, A., Singh, B., & Alkali, M. (2004). Profile distribution of sesquioxides in a granitic soil in Bauchi, Nigeria. 2004). Managing Soil Resources for Food Security and Sustainable Environment. Proceedings of the 29th Annual Conference of the Soil Science Society of Nigeria held at University of Agriculture, Abeokuta, Nigeria.

  • Hazelton, P., & Murphy, B. (2016). Interpreting soil test results: What do all the numbers mean?. CSIRO publishing. Melbourne.

  • Heba, E., Elbehiry, F., & Abowaly, M. (2017). Soil quality indices—Special focus on salt-affected soil: Review and case study in Northern Egypt. Environment, Biodiversity and Soil Security, 1, 85–100.

    Google Scholar 

  • IITA. (1979). International Institute of Tropical Agriculture Nigeria. Selected methods for soil and plant analysis.

  • Jimoh, A. I., Mbaya, A. L., Akande, D., Agaku, D. T., & Haruna, S. (2020). Impact of toposequence on soil properties and classifcation in Zaria, Kaduna State, northern Guinea savanna, Nigeria. International Journal of Environmental Quality, 38, 48–58.

    Google Scholar 

  • Jimoh, A., Yusuf, Y., & Yau, S. (2016). Soil suitability evaluation for rain-fed maize production at Gabari District Zaria Kaduna State, Nigeria. Ethiopian Journal of Environmental Studies and Management, 9(2), 137. https://doi.org/10.4314/ejesm.v9i2.2

    Article  Google Scholar 

  • Karlen, D. L., Ditzler, C. A., & Andrews, S. S. (2003). Soil quality: Why and how? Geoderma, 114(3–4), 145–156.

    Article  CAS  Google Scholar 

  • Karlen, D. L., Peterson, G. A., & Westfall, D. G. (2014). Soil and water conservation: Our history and future challenges. Soil Science Society of America Journal78(5), 1493-1499. 78:1493–1499. https://doi.org/10.2136/sssaj2014.03.0110

  • Karlen, D. L., Veum, K. S., Sudduth, K. A., Obrycki, J. F., & Nunes, M. R. (2019). Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil and Tillage Research, 195, 104365.

    Article  Google Scholar 

  • Klute, A. (1986). Water retention: Laboratory methods. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 635–662.

  • Kosmas, C., Kairis, O., Karavitis, C., Ritsema, C., Salvati, L., Acikalin, S., Alcalá, M., Alfama, P., Atlhopheng, J., & Barrera, J. (2014). Evaluation and selection of indicators for land degradation and desertification monitoring: Methodological approach. Environmental Management, 54(5), 951–970.

    Article  CAS  Google Scholar 

  • Kparmwang, T., Chude, V. O., Raji, B. A., & Odunze, A. C. (2000). Extractable micronutrients in some soils developed on sandstone and shale in the Benue Valley, Nigeria. Nigerian Journal of Soil Research, 1, 42-48.

  • Lal, R., Mohtar, R. H., Assi, A. T., Ray, R., Baybil, H., & Jahn, M. (2017). Soil as a basic nexus tool: Soils at the center of the food–energy–water nexus. Current Sustainable/renewable Energy Reports, 4(3), 117–129.

    Article  Google Scholar 

  • Landon, J. R. (2014). Booker tropical soil manual: A handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Routledge.

  • Larson, W. E., & Pierce, F. J. (1994). The dynamics of soil quality as a measure of sustainable management. Defining Soil Quality for a Sustainable Environment, 35, 37–51.

    CAS  Google Scholar 

  • Les Editions, J. ( 2002). Africa Atlases: Nigeria. 1st Edition, Les Editions.

  • Liu, C., Chen, L., Tang, W., Peng, S., Li, M., Deng, N., & Chen, Y. (2018). Predicting potential distribution and evaluating suitable soil condition of oil tea Camellia in China. Forests, 9(8), 487.

    Article  Google Scholar 

  • Liu, Z., Zhou, W., Shen, J., Li, S., & Ai, C. (2014). Soil quality assessment of yellow clayey paddy soils with different productivity. Biology and Fertility of Soils, 50(3), 537–548.

    Article  Google Scholar 

  • Lu, R., Liang, R., & Duan, W. (2021). Dispersion and stability of fine-grained soils under different pretreatments based on the particle size distribution. Journal of Soils and Sediments, 21(1), 96–105.

    Article  Google Scholar 

  • Maes, J., Liquete, C., Teller, A., Erhard, M., Paracchini, M. L., Barredo, J. I., Grizzetti, B., Cardoso, A., Somma, F., & Petersen, J. -E. (2016). An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem Services, 17, 14–23.

    Article  Google Scholar 

  • Maniyunda, L., Raji, B., Odunze, A., & Malgwi, W. (2015). Forms and content of sesquioxides in soils on basement complexes of northern Guinea savanna of Nigeria. Journal of Soil Science and Environmental Management, 6(6), 148–157.

    Google Scholar 

  • Maniyunda, L. M., Raji, B. A., Odunze, A. C., & Malgwi, W. B. (2014). Geochemistry of major elemental oxides on a lithosequence in Kaduna State Nigeria. Nigerian Journal of Soil Science, 24(1), 24–35.

    Google Scholar 

  • Martíni, A. F., Valani, G. P., Boschi, R. S., Bovi, R. C., da Silva, L. F. S., & Cooper, M. (2020). Is soil quality a concern in sugarcane cultivation? A bibliometric review. Soil and Tillage Research, 204, 104751.

    Article  Google Scholar 

  • Marzaioli, R., d’Ascoli, R., De Pascale, R., & Rutigliano, F. (2010). Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Applied Soil Ecology, 44(3), 205–212.

    Article  Google Scholar 

  • Mas, J. -L., Derumeaux, G., Guillon, B., Massardier, E., Hosseini, H., Mechtouff, L., Arquizan, C., Béjot, Y., Vuillier, F., & Detante, O. (2017). Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. New England Journal of Medicine, 377(11), 1011–1021.

    Article  CAS  Google Scholar 

  • Maton, S. M., Marcus, N. D., Dodo, J. D., & Olaku, Z. M. (2016). Environmental implications of increased industrialization in Nigeria.

  • Maurya, S., Abraham, J., Somasundaram, S., Toteja, R., Gupta, R. & Makhija, S. (2020). Indicators for assessment of soil quality: A mini-review. Environmental Monitoring and Assessment, 192(9). https://doi.org/10.1007/s10661-020-08556-z

  • Merril, C. R. (2013). Is sporadic Alzheimer’s disease associated with diphtheria toxin? Journal of Alzheimer’s Disease, 34(3), 595–600.

    Article  CAS  Google Scholar 

  • Merrill, S. D., Liebig, M. A., Tanaka, D. L., Krupinsky, J. M., & Hanson, J. D. (2013). Comparison of soil quality and productivity at two sites differing in profile structure and topsoil properties. Agriculture, Ecosystems & Environment, 179, 53–61.

    Article  Google Scholar 

  • Moral, F. J., & Rebollo, F. J. (2017). Characterization of soil fertility using the Rasch model. Journal of Soil Science and Plant Nutrition. https://doi.org/10.4067/S0718-95162017005000035

    Article  Google Scholar 

  • Mukherjee, A., & Lal, R. (2014). Comparison of soil quality index using three methods. PLoS One, 9(8), e105981.

    Article  CAS  Google Scholar 

  • Nabiollahi, K., Golmohamadi, F., Taghizadeh-Mehrjardi, R., Kerry, R., & Davari, M. (2018a). Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma, 318, 16–28.

    Article  CAS  Google Scholar 

  • Nabiollahi, K., Taghizadeh-Mehrjardi, R., & Eskandari, S. (2018b). Assessing and monitoring the soil quality of forested and agricultural areas using soil-quality indices and digital soil-mapping in a semi-arid environment. Archives of Agronomy and Soil Science, 64(5), 696–707.

    Article  Google Scholar 

  • Nelson, D. W., & Sommer, L. E. (1982). Total Carbon, Organic Carbon and Organic Matter In: Pager, AL, RH Hiller and DR Keenay (ed.) Method of soil analysis, Part II, In: American Society of Agronomy, 539–579.

  • Nguemezi, C., Tematio, P., Yemefack, M., Tsozue, D., & Silatsa, T. (2020). Soil quality and soil fertility status in major soil groups at the Tombel area South-West Cameroon. Heliyon, 6(2), e03432.

    Article  CAS  Google Scholar 

  • Nieder R., Benbi, D. K., & Reichl, F. X. (2018). Soil Quality and Human Health. In: Soil Components and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1222-2_1

  • Obaje, N. G. (2009). Geology and mineral resources of Nigeria (Vol. 120). Springer.

  • Odunze, A. C., Musa, Y. D., & Abdulkadir, A. (2017). Soil quality, carbon sequestration and yield of maize (Zea mays L.) under maize/legume cropping system in alfisols of a savanna zone, Nigeria. American Journal of Climate Change, 6(04), 622.

  • Ojanuga, A. (2006). Agroecological zones of Nigeria manual. FAO/NSPFS, Federal Ministry of Agriculture and Rural Development, Abuja, Nigeria, 124.

  • Olaniyan, I. O., Agunwamba, J. C., & Ademiluyi, J. O. (2010). Lithologic characteristics of parts of the crystalline basement complex of northern Nigeria in relation to groundwater exploitation. ARPN Journal of Engineering and Applied Sciences, 5(7), 56–60.

    Google Scholar 

  • Orlando, J. I., Fu, H., Breda, J. B., van Keer, K., Bathula, D. R., Diaz-Pinto, A., Fang, R., Heng, P. -A., Kim, J., & Lee, J. (2020). Refuge challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Analysis, 59, 101570.

    Article  Google Scholar 

  • Panico, S., Esposito, F., Memoli, V., Vitale, L., Polimeno, F., Magliulo, V., Maisto, G., & De Marco, A. (2020). Variations of agricultural soil quality during the growth stages of sorghum and sunflower. Applied Soil Ecology, 152, 103569.

    Article  Google Scholar 

  • Paul, G. C., Saha, S., & Ghosh, K. G. (2020). Assessing the soil quality of Bansloi river basin, eastern India using soil-quality indices (SQIs) and random forest machine learning technique. Ecological Indicators, 118, 106804.

    Article  CAS  Google Scholar 

  • Raeisi-Vanani, H., Soltani-Toudeshki, A. R., Shayannejad, M., Ostad-Ali-Askari, K., Ramesh, A., Singh, V. P., & Eslamian, S. (2017). Wastewater and magnetized wastewater effects on soil erosion in furrow irrigation. International Journal of Research Studies in Agricultural Sciences (IJRSAS), 3(8), 1–14.

    Google Scholar 

  • Rahmati, M., Weihermüller, L., Vanderborght, J., Pachepsky, Y. A., Mao, L., Sadeghi, S. H., Moosavi, N., Kheirfam, H., Montzka, C., & Looy, K. V. (2018). Development and analysis of the Soil Water Infiltration Global database. Earth System Science Data, 10(3), 1237–1263.

    Article  Google Scholar 

  • Raiesi, F. (2017). A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological Indicators, 75, 307–320.

    Article  Google Scholar 

  • Raiesi, F., & Salek-Gilani, S. (2020). Development of a soil quality index for characterizing effects of land use changes on degradation and ecological restoration of rangeland soils in a semi-arid ecosystem. Land Degradation & Development, 31(12), 1533–1544.

    Article  Google Scholar 

  • Rhoades, J. (1983). Cation exchange capacity. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 149–157.

  • Riser-Roberts, E. (2020). Remediation of petroleum contaminated soils: Biological, physical, and chemical processes. CRC Press.

    Book  Google Scholar 

  • Sadiq, F. K., Maniyunda, L. M., Anumah, A. O., & Adegoke, K. A. (2021). Variation of soil properties under different landscape positions and land use in Hunkuyi, Northern Guinea savanna of Nigeria. Environmental Monitoring and Assessment, 193(4), 1–18.

    Article  CAS  Google Scholar 

  • Sattar, A., Naveed, M., Ali, M., Zahir, Z. A., Nadeem, S. M., Yaseen, M., Meena, V. S., Farooq, M., Singh, R., Rahman, M., & Meena, H. N. (2019). Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2018.09.012

    Article  Google Scholar 

  • Scherr, S. J. (1999). Soil degradation: A threat to developing-country food security by 2020? (Vol. 27). Intl Food Policy Res Inst.

  • Schloter, M., Nannipieri, P., Sørensen, S. J., & van Elsas, J. D. (2018). Microbial indicators for soil quality. Biology and Fertility of Soils, 54(1), 1–10.

    Article  CAS  Google Scholar 

  • Seker, C., Özaytekin, H. H., Negi, S. H., Gümü, L., Dedeoglu, M., Atmaca, E., & Karaca, U. (2017). Identification of regional soil quality factors and indicators: A case study on an alluvial plain (central Turkey). Solid Earth, 8, 583–595. https://doi.org/10.5194/se-8-583-2017

    Article  Google Scholar 

  • Seybold, C., Mansbach, M., Karlen, D., & Rogers, H. (2018). Quantification of soil quality. In Soil processes and the carbon cycle (pp. 387–404). CRC Press.

  • Shobayo, A. B., Aliyu, J., & Jimoh, A. I. (2019). Assessment of morphological, physical and chemical properties of orchard soils of the institute for agricultural research (IAR) horticultural garden and their taxonomic classification. Journal of Crop Research, Agroforestry and Environment ISSN 1597–8915.

  • Shobayo, A. B., Ya’u, S. L., & Aliyu, J. (2021). Mineralogical investigation of some imperfectly and poorly drained soils of the Nigerian northern Guinea savanna agroecology. Nigeria Journal of Soil Science, 31(1), 44–51. https://doi.org/10.36265/njss.2021.310106

  • Singh, M. J., Khera, K. L., & Santra, P. (2012). Selection of soil physical quality indicators in relation to soil erodibility. Archives of Agronomy and Soil Science58(6), 657-672.

  • Sione, S. M. J., Wilson, M. G., Lado, M., & González, A. P. (2017). Evaluation of soil degradation produced by rice crop systems in a Vertisol, using a soil quality index. CATENA, 150, 79–86.

    Article  CAS  Google Scholar 

  • Soto, L., Galleguillos, M., Seguel, O., Sotomayor, B., & Lara, A. (2019). Assessment of soil physical properties’ statuses under different land covers within a landscape dominated by exotic industrial tree plantations in south-central Chile. Journal of Soil and Water Conservation, 74(1), 12–23.

    Article  Google Scholar 

  • Thomas, G. W., & Hargrove, W. L. (1984). The chemistry of soil acidity. Soil Acidity and Liming, 12, 3–56.

    CAS  Google Scholar 

  • Valani, G. P., Vezzani, F. M., & Cavalieri-Polizeli, K. M. V. (2020). Soil quality: Evaluation of on-farm assessments in relation to analytical index. Soil and Tillage Research, 198, 104565.

    Article  Google Scholar 

  • Vasu, D., Singh, S. K., Ray, S. K., Duraisami, V. P., Tiwary, P., Chandran, P., Nimkar, A. M., & Anantwar, S. G. (2016). Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70–79.

    Article  CAS  Google Scholar 

  • Weil, R., & Brady, N. (2016). The nature and properties of soils, ed. Columbus, Ohio: Pearson.

  • Yao, R. J., Yang, J. S., Gao, P., Zhang, J. B., Jin, W. H., & Yu, S. P. (2014). Soil quality index model for assessing the impact of groundwater on soil in an intensively farmed coastal area of E China. Journal of Plant Nutrition and Soil Science, 177(3), 330–342.

    Article  CAS  Google Scholar 

  • Yu, P., Han, D., Liu, S., Wen, X., Huang, Y., & Jia, H. (2018a). Soil quality assessment under different land uses in an alpine grassland. CATENA, 171, 280–287.

    Article  CAS  Google Scholar 

  • Yu, P., Liu, S., Zhang, L., Li, Q., & Zhou, D. (2018b). Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Science of the Total Environment, 616, 564–571.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors acknowledge their universities for the enabling platform to carry out this research. K. A. Adegoke acknowledges the Global Excellence Stature (GES) 4.0 Postdoctoral Fellowships Fourth Industrial Revolution and the University of Johannesburg, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lemuel Musa Maniyunda or Kayode Adesina Adegoke.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadiq, F.K., Maniyunda, L.M., Adegoke, K.A. et al. Evaluating quality of soils formed on basement complex rocks in Kaduna State, northern Guinea savanna of Nigeria. Environ Monit Assess 193, 383 (2021). https://doi.org/10.1007/s10661-021-09157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09157-0

Keywords

Navigation