Skip to main content
Log in

Spatiotemporal variations in the composition of algal mats in wastewater treatment ponds of tannery industry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Wastewater Treatment Pond (WTP) is an effective remediation technology for economically developing nations. Although it's excessive organic and nutrient loads with higher water logging time triggers mixed and unprofitable microalgal mats. This may serve as a seeding source for Cyanobacterial bloom in receiving waterbodies. Since, to maintain the growth of desirable algal species in WTPs, understanding towards environmental regulation and algal mat composition is important, especially for tropical countries, like India. In this study, biological treatment pond (BTP) and outlet pond (OP), of a tannery effluent treatment plant in eastern coast of India, were chosen for surveying the algal community composition concerning ecological parameters. Nearly, both the ponds were polluted, but the diversity was lower in BTP due to its elevated nutrient content (Ammonia 173 mg L−1) and higher persistent organic matters (COD 301.7 mg L−1) than OP. Using canonical correspondence analysis, seasonal variations showed higher species abundance during early summer compared to other seasons. A total of 37 taxa forming thick algal mats were recorded. The matrix of mats was mainly composed of Cyanobacterial members such as Phormidium, Leptolyngbya, Spirulina, and Pseudanabaena, followed by diatoms, especially Amphora and Nitzschia. Diatoms commonly occurred as embedded component in the entangled matrix of blue-green algal filaments. Hierarchical cluster analysis was employed to group all these taxa based on their seasonal appearance and abundance. This year-long intensive study revealing seasonal algal mat composition patterns in these WTPs will ultimately safeguard the livelihood and security of adjoining localities through proper site-specific pollution control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

All the data are enclosed within the manuscript. There is no associated data.

References

  • Ács, É., Szabó, K., Tóth, B., & Kiss, K. T. (2004). Investigation of benthic algal communities, especially diatoms of some Hungarian streams in connection with reference conditions of the water framework directives. Acta Botanica Hungarica, 46, 255–278. https://akjournals.com/view/journals/034/46/3-4/article-p255.xml

  • Akiyama, M. (1977). Illustrations of the Japanese fresh-water algae. Uchidarokakuho Publishing Company Limited

  • Ammel, R. (2018). Understanding biochemical oxygen demand. EBH. https://ebhengineering.com/2018/02/07/understanding-biochemical-oxygen-demand-bod/

  • Anene, A. (2003). Techniques in hydrobiology. In E. Onyeike & J. O. Osuji (Eds.), Research techniques in biological and chemical sciences (pp. 174–189). Springfield Publishers Ltd.

    Google Scholar 

  • APHA. (1998). Standard Methods for the Examination of Water and Wastewater (Ed. 20). Washington DC, USA

  • APHA. (2005). Standard methods for the examination of water and wastewater. Port City Press.

    Google Scholar 

  • Atici, T. (2018). Use of cluster analyze and similarity of algae in Eastern Black Sea Region Glacier Lakes (Turkey), key area: Artabel Lakes Natural Park. Gazi University Journal of Science, 31(1), 25–40.

    Google Scholar 

  • Atici, T., & Tokatli, C. (2018). Use of biological diatom index (BDI) to evaluate the surface water quality: a case study in a freshwater ecosystem from Central Anatolia Region of Turkey. New Technologies in Water Sector, 1, 25–26.

    Google Scholar 

  • Atici, T., Tafli, T., & Solak, C. (2018). Determination of epipelic, epiphytic and epilitic indicator algae; Sarısu Creek (Antalya) sampling area. Biological Diversity and Conservation, 11(3), 174–179.

  • Atici, T. Tokatli, C., & Çiçek, A. (2018). Dıatoms of Seydısuyu Stream Basın (Turkey) and assessment of water qualıty by statıstıcal and bıologıcal approaches. Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi36(1), 271–288.

  • Badr, S., El-Deeb, M., Ghazy, M., & Moghazy, R. (2010). Toxicity assessment of Cyanobacteria in a wastewater treatment plant Egypt. Journal of Applied Sciences Research, 6, 1511–1516.

    CAS  Google Scholar 

  • Banerjee, S., & Pal, R. (2017). Morphotaxonomic study of blue green algae from pristine areas of West Bengal with special reference to SEM studies of different morphotypes and four new reports. Phytomorphology, 67, 67–83.

    Google Scholar 

  • Bartram, J., & Chorus, I. (1999). Toxic Cyanobacteria in water: a guide to their public health consequences, monitoring and management. CRC Press.

    Book  Google Scholar 

  • Behera, M. D., Patidar, N., Chitale, V. S., Behera, N., Gupta, D., Matin, S., Tare, V., Panda, S. N. & Sen, D. J. (2014). Increase in agricultural patch contiguity over the past three decades in Ganga River Basin, India. Current Science, 502–511. https://www.jstor.org/stable/24103504

  • Benemann, J. R. (2008). Opportunities and challenges in algae biofuels production. Algae World, p. 15. Singapore.

  • Bere, T., & Tundisi, J. G. (2011). Diatom-based water quality assessment in streams influenced by urban pollution: effects of natural and two selected artificial substrates, São Carlos-SP, Brazil. Brazilian Journal of Aquatic Sciences and Technology, 15, 54–63.

    Article  Google Scholar 

  • Bose, R., Bar, R., & Pal, R. (2017). Floristic assortment of planktonic and epipsammic diatoms from Eastern India with new reports. Journal of Algal Biomass Utilization, 51–68.

  • Bosnic, M., Buljan, J., & Daniels, R.P. (2000). Pollutants in tannery effluents. UNIDO.

  • Chowdhury, M., Mostafa, M. G., Biswas, T. K., Mandal, A., & Saha, A. K. (2015). Characterization of the effluents from leather processing industries. Environmental Processing, 2, 173–187. https://doi.org/10.1007/s40710-015-0065-7

    Article  Google Scholar 

  • Craggs, R., Park, J., Heubeck, S., & Sutherland, D. (2014). High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. New Zealand Journal of Botany, 52(1), 60–73. https://doi.org/10.1080/0028825X.2013.861855

    Article  Google Scholar 

  • Dawn, A., & Basu, R. (2016). A profile of industrial pollution in Kolkata Municipal Corporation Area: The case of Tanneries Kolkata West Bengal. Transactions, 38(1), 79–88.

    Google Scholar 

  • Derakhshandeh, M., Atici, T., & Un, U. T. (2020). Evaluation of wild-type microalgae species biomass as carbon dioxide sink and renewable energy resource. Waste and Biomass Valorization, 12, 105–121. https://doi.org/10.1007/s12649-020-00969-8

    Article  CAS  Google Scholar 

  • Dey, S., Botta, S., Kallam, R., Angadala, R., & Andugala, J. (2021). Seasonal variation in water quality parameters of Gudlavalleru Engineering College pond. Current Research in Green and Sustainable Chemistry, 4, 100058. https://doi.org/10.1016/j.crgsc.2021.100058

    Article  Google Scholar 

  • Dineshkumar, R., & Sen, R. (2020). A sustainable perspective of microalgal biorefinery for co-production and recovery of high-value carotenoid and biofuel with CO2 valorization. Biofuels, Bioproducts and Biorefining, 14(4), 879–897. https://doi.org/10.1002/bbb.2107

    Article  CAS  Google Scholar 

  • Douterelo, I., Perona, E., & Mateo, P. (2004). Use of Cyanobacteria to assess water quality in running waters. Environmental Pollution, 127, 377–384. https://doi.org/10.1016/j.envpol.2003.08.016

    Article  CAS  Google Scholar 

  • Duong, T. T., Feurtet-Mazel, A., Coste, M., Dang, D. K., & Boudou, A. (2007). Dynamics of diatom colonization process in some rivers influenced by urban pollution (Hanoi, Vietnam). Ecological Indicators, 7(4), 839–851. https://doi.org/10.1016/j.ecolind.2006.10.003

    Article  Google Scholar 

  • Durai, G., & Rajasimman, M. (2011). Biological treatment of tannery wastewater - A review. Journal of Environmental Science and Technology., 4, 3910–3923. https://doi.org/10.3923/jest.2011.1.17

    Article  CAS  Google Scholar 

  • Esteves, S. M., Almeida, S. F., Gonçalves, S., Rimet, F., Bouchez, A., & Figueira, E. (2018). Sensitive vs. tolerant Nitzschia palea (Kützing) W. Smith strains to atrazine: a biochemical perspective. Ecotoxicology, 27(7), 860–870. https://doi.org/10.1007/s10646-018-1953-1

  • Garcia-pichel, F., Nubel, U., Muyzer,G., & Kuhl, M. (1999). Cyanobacterial community diversity and its quantification. In Bell, C. R., Brylinsky, M. & Johnson G. P. Microbial Biosystems: New Frontiers, Proceedings of 8th International Symposium on Microbial Ecology. Halifax, Canada: Atlantic Canada Society for Microbial Ecology.

  • Graneli, E., Weberg, M., & Salomon, P. S. (2008). Harmful algal blooms of allelopathic microalgal species: The role of eutrophication. Harmful Algae, 8(1), 94–102. https://doi.org/10.1016/j.hal.2008.08.011

    Article  CAS  Google Scholar 

  • Hamilton, Tr. L., Klatt, J. M., de Beer, D., & Macalady, J. L. (2018). Cyanobacterial photosynthesis under sulfidic conditions: insights from the isolate Leptolyngbya sp. strain hensonii. The ISME Journal, 12, 568–584.

    Article  CAS  Google Scholar 

  • Harris, T. D., Smith, V. H., Graham, J. L., Van de Waal, D. B., Tedesco, L. P., & Clercin, N. (2016). Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on Cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Waters, 6(2), 199–210. https://doi.org/10.5268/IW-6.2.938

    Article  CAS  Google Scholar 

  • Hauer, F. R., & Lamberti, G. (2017). Methods in stream ecology. In Ecosystem Structure (Vol. 1). Academic Press

  • Heath, M. W., Wood, S. A., Brasell, K. A., Young, R. G., & Ryan, K. G. (2015). Development of habitat suitability criteria and in-stream habitat assessment for the benthic Cyanobacteria Phormidium. River Research and Applications, 1, 98–108. https://doi.org/10.1002/rra.2722

    Article  Google Scholar 

  • Heath, M., Wood, S. A., Young, R. G., & Ryan, K. G. (2016). The role of nitrogen and phosphorus in regulating Phormidium sp. (Cyanobacteria) growth and anatoxin production. FEMS Microbiology Ecology, 92(3), fiw021. https://doi.org/10.1093/femsec/fiw021

  • Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., Dortch, Q., Gobler, C. J., Heil, C. A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H. G., Sellner, K., Stockwell, D. A., Stoecker, D. K., & Suddleson, M. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8, 3–13. https://doi.org/10.1016/j.hal.2008.08.006

    Article  CAS  Google Scholar 

  • Iloms, E., Ololade, O. O., Ogola, H. J., & Selvarajan, R. (2020). Investigating industrial effluent impact on municipal wastewater treatment plant in Vaal, South Africa. International Journal of Environmental Research and Public Health17(3), 1096. https://doi.org/10.3390/ijerph17031096

  • Jamie, L. M., & Laurie, L. R. (2008). Adaptation of Cyanobacteria to the sulfide-rich microenvironment of black band disease of coral. FEMS Microbiology Ecology, 67(2), 242–251. https://doi.org/10.1111/j.15746941.2008.00619.x

    Article  Google Scholar 

  • Jauffrais, T., Agogué, H., Gemin, M. P., Beaugeard, L., & Martin-Jézéquel, V. (2017). Effect of bacteria on growth and biochemical composition of two benthic diatoms Halamphora coffeaeformis and Entomoneis paludosa. Journal of Experimental Marine Biology and Ecology, 495, 65–74. https://doi.org/10.1016/j.jembe.2017.06.004

    Article  CAS  Google Scholar 

  • Jeyanthi, S., Santhanam, P., & Devi, A. S. (2018). Halophilic benthic diatom Amphora coffeaeformis—A potent biomarker for lipid and biomedical application. Indian Journal of Experimental Biology, 56, 698–701.

    Google Scholar 

  • Jitha, G., & Gopal, M. (2017). Column type photobioreactor for waste water treatment in petrochemical industries. Journal of Technological Advancement and Scientific Research, 3(2), 23–26. https://doi.org/10.14260/jtasr/2017/07

  • Karthick, B., Hamilton, P. B., & Kociolek, J. P. (2013). An Illustrated Guide to Common Diatoms of Peninsular India. Gubbi: Gubbi Labs.

  • Kim, B. H. (1999). Ecology of a Cyanobacterial mat community in a Korean thermal wastewater stream. Aquatic Ecology, 33(4), 331–338. https://doi.org/10.1023/A:1009986606414

    Article  CAS  Google Scholar 

  • Kim, H., Jo, B. Y., Kim, H. S., Kim, H., Jo, B. Y., & Kim, H. S. (2017). Effect of different concentrations and ratios of ammonium, nitrate, and phosphate on growth of the blue-green alga (cyanobacterium) Microcystis aeruginosa isolated from the Nakdong River Korea. Algae, 32(4), 275–284. https://doi.org/10.4490/algae.2017.32.10.23

    Article  CAS  Google Scholar 

  • Klemenčić, K. A., & Toman, M. J. (2010). Influence of environmental variables on benthic algal associations from selected extreme environments in Slovenia in relation to the species identification. Periodicum Biologorum, 112(2), 179–191.

    Google Scholar 

  • Kolayli, S., & Sahin, B. (2009). Species composition and diversity of epipelic algae in Balikli Dam Reservoir, Turkey. Journal of Environmental Biology, 30, 939–944.

    Google Scholar 

  • Komárek, J., & Anagnostidis, K. (1998). Cyanoprokaryota 1. Teil Chroococcales. Süsswasserflora von Mitteleuropa, Bd. 19/1. Jena: Gustav Fisher Verlag.

  • Komárek, J., & Anagnostidis, K. (2005). Cyanoprokaryota 2. Teil Oscillatoriales. Süsswasserflora von Mitteleuropa, Bd. 19/2. Jena: Gustav Fisher Verlag.

  • Komárek, J., Ventura, S., Turicchia, S., Komárková, J., Mascalchi, C., & Soldati, E. (2005). Cyanobacterial diversity in alkaline marshes of northern Belize (Central America). Algological Studies, 117, 265–278. https://doi.org/10.1127/1864-1318/2005/0117-0265

    Article  Google Scholar 

  • Kozak, A., Budzyńska, A., Dondajewska-Pielka, R., Kowalczewska-Madura, K., & Gołdyn, R. (2020). Functional groups of phytoplankton and their relationship with environmental factors in the restored Uzarzewskie Lake. Water, 12(2), 313. https://doi.org/10.3390/w12020313

    Article  CAS  Google Scholar 

  • Kutlu, B., Aydın, R., Danabas, D., & Serdar, O. (2020). Temporal and seasonal variations in phytoplankton community structure in Uzuncayir Dam Lake (Tunceli, Turkey). Environmental Monitoring and Assessment, 192(2), 1–12. https://doi.org/10.1007/s10661-019-8046-3

    Article  CAS  Google Scholar 

  • Li, X., Wang, Y. N., Li, J., & Shi, B. (2016). Effect of sodium chloride on structure of collagen fiber network in pickling and tanning. Journal of the American Leather Chemists Association, 111(6), 230–237.

    CAS  Google Scholar 

  • Liao, C. C., Liu, S. L., & Wang, W. L. (2006). Effects of temperature and pH on growth and photosynthesis of the thermophilic cyanobacterium Synechococcus lividus as measured by pulse-amplitude modulated fluorometry. Phycological Research, 54(4), 260–268. https://doi.org/10.1111/j.1440-1835.2006.00432.x

    Article  CAS  Google Scholar 

  • Likhoshway, E. V., Sorokovikova, E. G., Bel’kova, N. L. , et al. (2006). Silicon mineralization in the culture of Cyanobacteria from hot springs. Doklady Biological Sciences, 407(1), 201–205. https://doi.org/10.1134/S0012496606020256

    Article  Google Scholar 

  • Lin, Y. P., Wang, C. L., Chang, C. R., & Yu, H. H. (2011). Estimation of nested spatial patterns and seasonal variation in the longitudinal distribution of Sicyopterus japonicus in the Datuan Stream, Taiwan by using geostatistical methods. Environmental Monitoring and Assessment, 178(1), 1–18. https://doi.org/10.1007/s10661-010-1666-2

    Article  Google Scholar 

  • Mara, D. D. (2006). Natural wastewater treatment. In Manual of Best Practice. University of Leeds.

    Google Scholar 

  • Martin-Jézéquel, V., Hildebrand, M., & Brzezinski, M. A. (2000). Silicon metabolism in diatoms: Implications for growth. Journal of Phycology, 36(5), 821–840. https://doi.org/10.1046/j.1529-8817.2000.00019.x

    Article  Google Scholar 

  • Mateo, P., Leganés, F., Perona, E., Loza, V., & Fernández-Piñas, F. (2015). Cyanobacteria as bioindicators and bioreporters of environmental analysis in aquatic ecosystems. Biodiversity and Conservation, 24(4), 909–948. https://doi.org/10.1007/s10531-015-0903-y

    Article  Google Scholar 

  • Meijer, N. (2017). The relationship between enhanced Phormidium growth and fine sediment deposition in New Zealand Rivers: An experiment executed in collaboration with the Cawthron Institute in Nelson, New Zealand. Norway: Master's thesis, University College of Southeast.

  • Milferstedt, K., Kuo-Dahab, W. C., Butler, C. S., et al. (2017). The importance of filamentous Cyanobacteria in the development of oxygenic photogranules. Scientific Reports, 7(1), 1–5. https://doi.org/10.1038/s41598-017-16614-9

    Article  CAS  Google Scholar 

  • Miloslav, K., & Aloisie, P. (2003). Litoral diatoms as indicators for the eutrophication of shallow lakes. Hydrobiology, 506–509(1–3), 519–524.

    Google Scholar 

  • Muga, H. E., & Mihelcic, J. R. (2008). Sustainability of wastewater treatment technologies. Journal of Environmental Management, 88, 437–447. https://doi.org/10.1016/j.jenvman.2007.03.008

    Article  CAS  Google Scholar 

  • Muruganantham, P., Gopalakrishnan, T., Chandrasekaran, R., & Jeyachandran, S. (2012). Seasonal variations and diversity of planktonic diatoms of Kodikkarai and Velanganni, Southeast Coast of India. Journal of Oceanography and Marine Environmental System, 2(1), 1–10.

    Google Scholar 

  • Nashaat, M. R., Merhoon, K. A., Salman, S. K., Abbas, E. K., & Ali, E. H. (2019). Impact of Al-Rasheed power plant effluents on phytoplankton-biodiversity in Tigris river, Southern Bagdad. Journal of Physics, 1234, 012064.

    CAS  Google Scholar 

  • Nayak, S., & Prasanna, R. (2007). Soil pH and its role in Cyanobacterial abundance and diversity in rice field soils. Applied Ecology and Environmental Research, 5(2), 103–113.

    Article  Google Scholar 

  • Oliveira, A. S., Bocio, A., Trevilato, T. M., Takayanagui, A. M., Domingo, J. L., & Segura-Munoz, S. I. (2007). Heavymetals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant. Environmental Science and Pollution Research International, 14, 483–489. https://doi.org/10.1065/espr2006.10.355

    Article  CAS  Google Scholar 

  • Özer, T., Erkaya, İA., Koçer, M. A. T., Udoh, A. U., & Duygu, D. Y. (2019). Spatial and temporal variations in composition of algae assemblages with environmental variables in an urban stream (Ankara, Turkey). Environmental Monitoring and Assessment, 191(6), 1–14. https://doi.org/10.1007/s10661-019-7527-8

    Article  CAS  Google Scholar 

  • Naselli-Flores, J. P. L. (2020). Phytoplankton in extreme environments: importance and consequences of habitat permanency. Hydrobiologia, 1–20. https://doi.org/10.1007/s10750-020-04353-4

  • Parikh, A., Shah, V., & Madamwar, D. (2006). Cyanobacterial flora from polluted industrial effluents. Environmental Monitoring and Assessment, 116(1–3), 91–102. https://doi.org/10.1007/s10661-006-7229-x

    Article  CAS  Google Scholar 

  • Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, 35–42. https://doi.org/10.1016/j.biortech.2010.06.158

    Article  CAS  Google Scholar 

  • Pinar, G., Duque, E., Haidour, A., et al. (1997). Removal of high concentrations of nitrate from industrial wastewaters by bacteria. Applied Environmental Microbiology, 63(5), 2071–2073.

    Article  CAS  Google Scholar 

  • Pradhan, A., Bhaumick, P., Das, S., Mishra, M., Khanam, S., Hoque, B. A., Mukherjee, I., Thakur, A. R., & Chaudhuri, S. R. (2008). Phytoplankton biodiversity as indicator of water quality for fish cultivation. Journal of Environmental Science, 4, 406–411.

    Google Scholar 

  • Prasad, M. V., & Panigrahy, R. C. (2009). Phytoplankton community structure and its variability during southwest to northeast monsoon transition in the coastal waters of Kalpakkam, east coast of India. International Journal of Oceans and Oceanography, 3(1), 43–74.

    Google Scholar 

  • Preisner, M., Neverova-Dziopak, E., & Kowalewski, Z. (2020). Mitigation of eutrophication caused by wastewater discharge: A simulation-based approach. Ambio, 50, 1–12. https://doi.org/10.1007/s13280-020-01346-4

    Article  CAS  Google Scholar 

  • Prescott, G. W. (1982). Algae of the Western Great Lakes Area. Otto Koeltz Science Publishers.

    Google Scholar 

  • Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411–3424. https://doi.org/10.1016/j.apenergy.2010.11.025

    Article  CAS  Google Scholar 

  • Ríos, A., Ascaso, C., Wierzchos, J., Fernández-Valiente, E., & Quesada, A. (2004). Microstructural characterization of Cyanobacterial mats from the McMurdo Ice Shelf Antarctica. Applied Environmental Microbiology, 70(1), 569–580. https://doi.org/10.1128/AEM.70.1.569-580.2004

    Article  CAS  Google Scholar 

  • Romanis, C. S., Pearson, L. A., & Neilan, B. A. (2020). Cyanobacterial blooms in wastewater treatment facilities: Significance and emerging monitoring strategies. Journal of Microbiological Methods, 180, 106123. https://doi.org/10.1016/j.mimet.2020.106123

    Article  CAS  Google Scholar 

  • Round, F. E., Crawford, R. M., & Mann, D. G. (1990). The diatoms. Biology and morphology of the genera. Cambridge University Press.

    Google Scholar 

  • Sahasranaman, A., & Emmanuel, K. V. (2001). Common Effluent Treatment Plant, Kolkata Leather Complex, Kolkata, India: UNIDO.

  • Saxena, A., Prakash, K., Phogat, S., Singh, P. K., & Tiwari, Archana. (2020). Inductively coupled plasma nanosilica based growth method for enhanced biomass production in marine diatom algae. Bioresource Technology, 314, 123747.

    Article  CAS  Google Scholar 

  • Senthil, P., Jeyachandran, S., Manoharan, C., & Vijayakumar, S. (2012). Microbial diversity in rubber industry effluent. International Journal of Pharma and Bio Sciences, 2(1), 123–131.

    CAS  Google Scholar 

  • Shanthala, M., Hosmani, S. P., & Hosetti, B. B. (2009). Diversity of phytoplanktons in a waste stabilization pond at Shimoga Town, Karnataka State, India. Environmental Monitoring and Assessment, 151, 437–443. https://doi.org/10.1007/s10661-008-0287-5

    Article  CAS  Google Scholar 

  • Silva-Bedoya, L. M., Sánchez-Pinzón, M. S., Cadavid-Restrepo, G. E., & Moreno-Herrera, C. X. (2016). Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms. Microbiological Research, 192, 313–325. https://doi.org/10.1016/j.micres.2016.08.006

    Article  CAS  Google Scholar 

  • Summerfield, T. C., & Sherman, L. A. (2008). Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment. Applied Environmental Microbiology, 74(17), 5276–5284. https://doi.org/10.1128/AEM.00883-08

  • Sutherland, D. L., Turnbull, M. H., & Craggs, R. J. (2017). Environmental drivers that influence microalgal species in fullscale wastewater treatment high rate algal ponds. Water Research, 124, 504–512. https://doi.org/10.1016/j.watres.2017.08.012

    Article  CAS  Google Scholar 

  • Taylor, J. C., Harding, W. R., & Archibald, C. G. M. (2007). An illustrated guide to some common diatom species from South Africa. Pretoria: Water Research Commission.

  • Tekerlekopoulou, A. G., Akratos, C. S., & Vayenas, D. V. (2017). Integrated biological treatment of olive mill waste combining aerobic biological treatment, constructed wetlands, and composting. In Olive Mill Waste (pp. 139–159). Academic Press. https://doi.org/10.1016/B978-0-12-805314-0.00007-8

  • Telesh, I. V. (2004). Plankton of the Baltic estuarine ecosystems with emphasis on Neva Estuary: A review of present knowledge and research perspectives. Marine Pollution Bull, 49, 206–219. https://doi.org/10.1016/j.marpolbul.2004.02.009

    Article  CAS  Google Scholar 

  • Tong, Y., Wang, M., Peñuelas, J., Liu, X., Paerl, H. W., Elser, J. J., Sardansb, J., Couture, R. M., Larssen, T., Hu, H., Dong, X., He, W., Zhang, W., Wang, X., Zhang, Y., Liu, Y., Zeng, S., Kong, X., Janssen, A. B. G., & Lin, Y. (2020). Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proceedings of the National Academy of Sciences, 117(21), 11566–11572. https://doi.org/10.1073/pnas.1920759117

    Article  CAS  Google Scholar 

  • Vasconcelos, V. M., & Pereira, E. (2001). Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Research, 35(5), 1354–1357. https://doi.org/10.1016/S0043-1354(00)00512-1

    Article  CAS  Google Scholar 

  • Verma, T., Ramteke, P. W., & Grag, S. K. (2008). Quality assessment of treated tannery wastewater with special emphasis on pathogenic E. coli detection through serotyping. Environmental Monitoring and Assessment, 145, 243–249. https://doi.org/10.1007/s10661-007-0033-4

    Article  CAS  Google Scholar 

  • Wang, X., Wen, X., Xia, Y., Hu, M., Zhao, F., & Ding, K. (2012). Ammonia oxidizing bacteria community dynamics in a pilot-scale wastewater treatment plant. PLoS ONE, 7(4), e36272. https://doi.org/10.1371/journal.pone.0036272

    Article  CAS  Google Scholar 

  • Wentzel, M. C., Ekama, G. A., & Loewenthal, R. E. (2003). Fundamentals of biological behaviour and wastewater strength tests. In (Ed. 1) The Handbook of Water and Wastewater Microbiology (pp. 145–173). London: Academic Press. https://doi.org/10.1016/B978-0-12-470100-7.X5000-6

  • Yan, M., Chen, S., Huang, T., Li, B., Li, N., Liu, K., Zong, R., Miao, Y., & Huang, X. (2020). Community compositions of phytoplankton and eukaryotes during the mixing periods of a drinking water reservoir: Dynamics and interactions. International Journal of Environmental Research and Public Health, 17(4), 1128. https://doi.org/10.3390/ijerph17041128

    Article  CAS  Google Scholar 

  • Yang, X., Wu, X., Hao, H., & He, Z. (2008). Mechanisms and assessment of water eutrophication. Journal of Zhejiang University Science B, 9(3), 197–209. https://doi.org/10.1631/jzus.B0710626

    Article  CAS  Google Scholar 

  • Yuan, T. Q. & Sun, R. C. (2010). Modification of straw for activated carbon preparation and application for the removal of dyes from aqueous solutions. In Sun, R. C. (Ed. 1) Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels (pp. 239–252). https://doi.org/10.1016/B978-0-444-53234-3.00009-2

Download references

Acknowledgements

Iman Dey would like to thank Centre for Research in Nanoscience and Nanotechnology, University of Calcutta; Centre for Advanced Study, Phase VII, Department of Botany, University of Calcutta; and Department of Science and Technology-Fund for Improvement of S & T Infrastructure in Higher Educational System program, for providing infrastructural facilities to conduct the research work.

Funding

Iman Dey was financially supported by the University Grants Commission (UGC-Ref. No.: 723/(CSIR-UGC NET JUNE 2017).

Author information

Authors and Affiliations

Authors

Contributions

RP gave the concept of investigation, ID has done all the experimental works and wrote the full manuscript, and SB and RB critically analyzed the manuscript. Finally, RP edited the whole manuscript.

Corresponding author

Correspondence to Ruma Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, I., Banerjee, S., Bose, R. et al. Spatiotemporal variations in the composition of algal mats in wastewater treatment ponds of tannery industry. Environ Monit Assess 193, 359 (2021). https://doi.org/10.1007/s10661-021-09144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09144-5

Keywords

Navigation