Skip to main content

Advertisement

Log in

Factors controlling phytoplankton dynamics in an arid reservoir in Tunisia (case of Sidi Saad dam)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Temporal variation of the phytoplankton community and environmental factors were investigated over 8 months: from January 2018 to November 2018 in the Sidi Saad reservoir (central Tunisia): May, June (spring season), July, August (summer season) September, October and November (autumn season), and January (winter season). The relationships between phytoplankton and environmental factors were explored using Canonical Correspondence Analysis (CCA). General linear models (GLMs) were used to predict the phytoplankton abundance. Analysis of variance (ANOVA) was used to test the hypothesis that the abundance of each group of taxa differed between sampling months. The results of chemical analysis of the reservoir showed that the environment was enriched in nitrates, nitrites, ammonium, and orthophosphate, especially in May. Carlson’s trophic index using average chemical variables showed that Sidi Saad has a mesotrophic statute. There is temporal phytoplankton succession in the Sidi Saad reservoir. Cyanophyceae dominated over the year except in winter and late autumn (November and January). Chlorophyceae was the dominant group in winter month. The CCA results showed that six environmental factors, orthophosphates (PO43−), total phosphates (TP), Secchi disc depth (SD), total nitrogen (TN), temperature (T), and nitrite (NO2) had significant influences on the changes in phytoplankton. GLM showed that PO43−, TP, TN, SD, and T were the significant predictors of phytoplankton abundance. Phytoplankton composition is largely dominated by the species Microcystis aeruginosa which formed a bloom with excessive abundance (up to 89.76 billion cell l−1 in spring). We recommend banning the fishing and their consumption during the period of Microcystis bloom and installing a system of biomonitoring of the levels of toxins in the water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data is available in supplementary file.

References

  • Barnabé, G., & Barnabé-Quet, R. (1997). Ecologie Aménagement Des Eaux Côtières. Lavoisier, 131, 135–138.

    Google Scholar 

  • Baykal, T., Açikgöz, İ, Yildiz, K., & Bekleyen, A. (2004). A study on algae in Devegeçidi Dam Lake. Turkish Journal of Botany, 28, 457–472.

    Google Scholar 

  • Ben Boubaker, H., Benzarti, Z., & Hénia, L. (2003). Les ressources en eau de la Tunisie: contraintes du climat et pression anthropique, in Arnould, P., Hotyat, M. (Eds.), Eau et environnement: Tunisie et milieux méditerranéens. ENS Edition, Lyon.

  • Blomqvist, P., Pettersson, A., & Hyenstrand, P. (1994). Ammonium-nitrogen: A key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems. Archiv Für Hydrobiologie, 132, 141–164.

    CAS  Google Scholar 

  • Bouchard, V. M. (2004). Floraisons des Cyanobactéries au lac Saint-Augustin: dynamique à court terme et stratification. Université Laval, Québec.

    Google Scholar 

  • Bouvy, M., Pagano, M., & Troussellier, M. (2001). Effect of a Cyanobacteria bloom (Cylindrospermopsis raciborskii) on bacteria and zooplankton communities in Ingazeira reservoir (northeast Brazil). Aquatic Microbial Ecology, 25, 215–227.

    Google Scholar 

  • Brancelj, A. (2002). High-mountain lakes in the eastern part of the Julian Alps. ZRC Publishing.

    Google Scholar 

  • Carlson, R. E., & Simpson, J. (1996). A coordinator’s guide to volunteer lake monitoring methods. North American Lake Management Society.

    Google Scholar 

  • Carmichael, W. W. (2001). Health effects of toxin producing cyanobacteria: The cyanoHABs. Human and Ecological Risk Assessment, 7, 1393–1407.

    Google Scholar 

  • Chia, M. A., Jankowiak, J. G., Kramer, J. B., Goleski, J. A., Huang, I. S., Zimba, P. V., Bittencourt-Oliveira, M. C., & Gobler, C. J. (2018). Succession and toxicity of Microcystis and Anabaena Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions. Harmful Algae, 74, 67–77.

    CAS  Google Scholar 

  • Cherif A. (2003). Le problème de l’eau en Tunisie nord-orientale: besoin en ressources locales et transferts interrégionaux, in Arnould, P., Hotyat, M. (Eds.), Eau et environnement: Tunisie et milieux méditerranéens. ENS Edition, Lyon.

  • Codd, G. A., Metcalf, J. S., & Beattie, K. A. (1999). Retention of Microcystis Aeruginosa and microcystin by salad lettuce (Lactuca Sativa) after spray irrigation with water containing cyanobacteria. Toxicon, 37(8), 1181–1185.

    CAS  Google Scholar 

  • Chorus, I., & Bartram, J. (1999). Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. E and FN Spon.

    Book  Google Scholar 

  • Conroy, B. J., Steinberg, D. K., Song, B., Kalmbach, A., Carpenter, E. J., & Foster, R. A. (2017). Mesozooplankton graze on cyanobacteria in the Amazon River Plume and Western Tropical North Atlantic. Frontiers in Microbiology., 3(8), 1436.

    Google Scholar 

  • DeMott, W. R., Gulati, R. D., & Donk, E. V. (2001). Effects of dietary phosphorus deficiency on the abundance, phosphorus balance, and growth of Daphnia cucullata in three hypereutrophic Dutch lakes. Limnology and Oceanography, 46(8), 1871–1880.

    CAS  Google Scholar 

  • Douma, M., Ouahid, Y., del Campo, F., Loudiki, M., Mouhri, K., & Oudra, B. (2010). Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinking-water reservoirs (Mansour Eddahbi, Almassira). Environmental Monitoring and Assessment, 160, 439–450.

    CAS  Google Scholar 

  • Downing, J. A., Watson, S. B., & McCauley, E. (2001). Predicting Cyanobacteria dominance in lakes. Aquatic Science, 58, 1905–1908.

    Google Scholar 

  • El Herry, S., Fathalli, A., Rejeb, J. B., & A., & Bouaïcha, N. (2008). Seasonal occurrence and toxicity of Microcystis spp and Oscillatoria tenuis in the Lebna Dam. Tunisia. Water Resources, 42, 1263–1273.

    Google Scholar 

  • Fathalli, A., Jenhani, A., Saker, M., Moreira, C., Romdhane, M. S., & Vasconcelos, V. M. (2010). First observation of the toxic and invasive cyanobacterium species Cylindrospermopsis raciborskii in Tunisian freshwaters. Toxicity assessment and molecular characterization. Fresenius Environmental Bulletin, 19, 1074–1083.

    CAS  Google Scholar 

  • Fathalli, A., Romdhane, M. S., Vasconcelos, V., Jenhani, B. R., & A. . (2015). Biodiversity of cyanobacteria in Tunisian freshwater reservoirs: Occurrence and potent toxicity. Journal of Water Supply: Research and Technology AQUA, 6, 755–772.

    Google Scholar 

  • Funari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 2, 97–125.

    Google Scholar 

  • Gafrej, R. (2017). Gouvernance de l’eau en Tunisie. Etude du cas du gouvernorat de Kasserine. International Alert. 74pp. https://www.international-alert.org/sites/default/files/Tunisia_WaterGovernanceKasserine_FR_2017.pdf (accessed 12/12/2020).

  • Garcia-Gonzalez, M., Sivak, M. N., Guerrero, M. G., Preiss, J., & Lara, C. (1992). Depression of carbon flow to the glycogen pool induced by nitrogen assimilation in intact cells of Anacystis nidulans. Physiologia Plantarum, 86, 360–364.

    CAS  Google Scholar 

  • Grasshoff, K., Ehrhardt, M., & Kremling, K. (1983). Methods of Seawater Analysis. Verlag Chemie GmbH.

    Google Scholar 

  • Haney, J. F. (1987). Field studies on Zooplankton-Cyanobacteria interactions. New Zealand. Journal of Marine and Freshwater Research, 21, 467–475.

    Google Scholar 

  • Hasle, G. R. (1978). Using the inverted microscope. In: Sournia, A. (ed.). 1978. Phytoplankton manual. Monographs on Oceanographic Methodology Unesco, 6, xvi-337 pp.

  • Henning, M., Hertel, H., Wall, H., & Kohl, J. G. (1991). Strain-specific influence of Microcystis aeruginosaon food ingestion and assimilation of some cladocerans and copepods. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie, 76, 37–45.

    Google Scholar 

  • Hudnell, K. H. (2008). Cyanobacterial Harmful Algal Blooms: State of the Science Research Needs Series. Advances in Experimental Medicine and Biology, 619, 217–237.

    Google Scholar 

  • Hyenstrand, P., Blomqvist, P., & Pettersson, A. (1998). Factors determining cyanobacterial success in aquatic systems—A literature review. Archiv Für Hydrobiologie, Ergebnisse Der Limnologie, 51, 41–62.

    Google Scholar 

  • ITES (2014). Etude stratégique, système hydraulique de la Tunisie à l’horizon 2030, Tunisian Institute for Strategic Studies, Tunisie. https://fdocuments.fr/document/systeme-hydraulique-de-la-tunisie-a-lhorizon-2030.html (accessed 10/10/2019).

  • Jenhani, B. R., & A., Bouaicha, N., ElHerry, S., Fathalli, A., Zekri, I., Haj Zekri, S., Limam, A., Alouini, S., & Romdhane, M.S. . (2006). Les cyanobactéries et leurs potentialités toxiques dans les retenues des retenues des barrages du Nord de la Tunisie. Archives De L’institut Pasteur De Tunis, 83, 1–4.

    Google Scholar 

  • Jenhani, B. R., & A., Fathalli, A., Djemali, I., Changeux, T., & Romdhane, M.S. . (2019). Tunisian reservoirs: Diagnosis and biological potentialities. Aquatic Living Resources, 32, 1–17.

    Google Scholar 

  • Jenhani B, R., & A., Fathalli, A., Moreira, C., Antunes, A., Romdhane, M.S., & Vasconcelos V. (2010). Molecular techniques for the toxicological assessment of cyanobacterial blooms in Tunisian freshwaters. In Proceedings of the 8th International Conference on Toxic Cyanobacteria ICTC8. Istanbul, Official Program and Abstract book, Turkey.

  • Lampert, W. (1987). Laboratory studies on zooplankton-Cyanobacteria interaction. New Zealand Journal of Marine and Freshwater Research, 21, 483–490.

    Google Scholar 

  • Lorenzen, C. J. (1967). Determination of chlorophyll and phaeopigments: Spectrophotometric equations. Limnology and Oceanography, 12, 343–346.

    CAS  Google Scholar 

  • Mili, S., Ennouri, R., Laouar, H., Chhibi, M., & Romdhane, N. (2017). Study of fish populations in the Sidi Saâd dam by means of multimill nets: Application in fisheries management. Journal of New Sciences, Agriculture and Biotechnology, 16, 2715–2725.

    Google Scholar 

  • Nehring, S. (1995). Dinoflagellate resting cysts as factors in phytoplankton ecology of the North Sea. Helgolander Meeresun, 49, 375–392.

    Google Scholar 

  • Olsen, Y., Vadstein, O., Andersen, T., & Jensen, A. (1989). Competition between Staurastrum luetkemuellerii (chlorophyceae) and Microcystis aeruginosa (cyanophyceae) under varying. modes of phosphate supply. Journal of Phycology, 25(3), 499–508.

  • Paerl, H. W., & Huisman, J. (2008). Blooms like it hot. Science, 320(5872), 57–58.

    CAS  Google Scholar 

  • Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: Causes, consequences, and controls. Microbial Ecology, 65(4), 995–1010.

    CAS  Google Scholar 

  • Paerl, H. W., Fulton, R. S., Moisander, P. H., & Dyble, J. (2001). Harmful freshwater algal bloom with an emphasis on Cyanobacteria. The Scientific World Journal, 1, 76–113.

    CAS  Google Scholar 

  • Peng, G., Martin, R. M., Dearth, S. P., Sun, X., Boyer, G. L., Campagna, S. R., Lin, S., & Wilhelm, S. W. (2018). Seasonally relevant cool temperatures interact with N chemistry to increase microcystins produced in lab cultures of Microcystis aeruginosa NIES-843. Environmental Science & Technology, 52(7), 4127–4136.

    CAS  Google Scholar 

  • Reynolds, C.S. (2008). The ecology of phytoplankton. In: Hudnell KH (Ed.). Advances in experimental medicine and biology 619. Cambridge University Press, Stewart.

  • Reynolds, C. S., & Walsby, A. E. (1975). Water Blooms. Biological Reviews, 4, 437–481.

    Google Scholar 

  • Robarts, R. D., & Zohary, T. (1987). Temperature effects on photosynthetic capacity respiration, and growth rates of bloom-forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research, 21, 391–399.

    CAS  Google Scholar 

  • Sabour, B., Loudiki, M., Oudra, B., Vasconcelos, V., Martins, R., Oubraim, S., & Brahim, F. (2002). Toxicity and toxinology of Microcystis ichtyobla be water bloom occurred in the Oued Mellah Lake (Morocco). Environmental Toxicology, 17, 24–31.

    CAS  Google Scholar 

  • Saqrane, S., & Oudra, B. (2009). Cyano HAB occurrence and water irrigation cyanotoxin contamination: ecological impacts and potential health risks. Toxins, 2, 113–122.

    Google Scholar 

  • Sellami, I., Ben Romdahane, S., Guermazi, W., El Bour, M., Hamza, A. M., & B., Pinel-Alloul B., Aleya L., & Ayadi H. (2012). Seasonal dynamics of plankton communities coupled with environmental factors in a semi-arid area: Sidi Saâd reservoir Tunisia. African Journal of Biotechnogy, 11, 865–877.

    Google Scholar 

  • Silva, P., & Vasconcelos, V. (2010). Allelopathic effect of Cylindrospermosis raciborskii extracts on the germination and growth of several plant species. Chemical Ecology, 26, 263–271.

    CAS  Google Scholar 

  • Tait, D., & Thaler, B. (2000). Atmospheric deposition and lake chemistry trends at a high mountain site in the eastern Alps. Journal of Limnology, 59, 61–71.

    Google Scholar 

  • ter Braak, C.J.F., & Smilauer, P. (2002). Canoco reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Ithaca (NY): Microcomputer Power.

  • ter Braak, C. J. F., & Verdonschot, P. F. M. (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences., 57, 255–289.

    Google Scholar 

  • TN (2017). Tunisie – Les eaux du barrage Sidi Saâd impropres à l’usage animal. Tunisie Numérique, 11 Avril 2017. https://www.tunisienumerique.com/tunisie-eaux-barrage-sidi-saad-impropres-a-lusage-animal/ (accessed May 2019).

  • Urrutia-cordero, P., Ekvall, M. K., & Hansson, L. (2016). Controlling harmful cyanobacteria: Taxa-specific responses of cyanobacteria to grazing by large-bodied daphnia in a biomanipulation scenario. PLoS ONE, 11, e0153032.

    Google Scholar 

  • Utermohl, H. (1958). Zur vervollkommung der quantitativen Phytomicroorganisms-Methodik. Mitteilungen der Internationalen Vereinigung fur Theoretische und Angewandte. Limnologie, 9, 1–38.

    Google Scholar 

  • Venrick, E.L. (1978). Water-bottles. In: Sournia, A. (ed.). 1978. Phytoplankton manual. Monographs on Oceanographic Methodology Unesco, 6, xvi-337 pp.

  • Weirich, C. A., & Miller, T. R. (2014). Freshwater harmful algal blooms: toxins and children’s health. Current Problems in Pediatric and Adolescent Health Care, 44(1), 2–24.

    Google Scholar 

  • Word Bank (2017). Renewable internal freshwater resources per capita (cubic meters). https://data.worldbank.org/indicator/ER.H2O.INTR.PC?view=map (accessed 10/ 10/2019).

  • Xiang, L., Yan-Wen, L., Bai, L.L., Hai-Ming, Z., Hui, L. QuanY., Caia C., Hui, M., Ming-Hung, W., & Qing, X.L. (2019). High ecological and human health risks from microcystins in vegetable fields in southern China. Environment International, 133 (A), 105–142.

  • Zar, J.H. (1999). Biostatistical analysis (Fourth ed.). Upper Saddle River, N.J. Prentice Hall, New Jersey.

  • Zhang, D. W., Xie, P., Liu, Y. Q., & Qiu, T. (2009). Transfer, distribution and bioaccumulation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health. Science of Total Environment, 407, 191–219.

    Google Scholar 

Download references

Acknowledgements

We thank Pr. Jose Alexander Elvir, Associate Editor of Environmental Monitoring and Assessment, and the two reviewers for their valuable comments and suggestions to improve the quality of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Mabrouk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabrouk, L., Hamza, A. & Ben Mansour, H. Factors controlling phytoplankton dynamics in an arid reservoir in Tunisia (case of Sidi Saad dam). Environ Monit Assess 193, 354 (2021). https://doi.org/10.1007/s10661-021-09125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09125-8

Keywords

Navigation