Skip to main content

Advertisement

Log in

Unravelling tidal effect on zooplankton community structure in a tropical estuary

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The variability in zooplankton density and species composition in response to tidal oscillations were investigated in the lesser saline upper reaches (E1) and higher saline lower reaches (E2) of the Mahanadi Estuary, located at the mouth of the third largest river in Indian Peninsula. This is the first of its kind high frequency observation over the tidal cycle ranging from highest high tide to lowest low tide in this estuary revealing dynamic variability of zooplankton assemblages. Zooplankton abundance was higher during high tide in comparison to low tide, irrespective of salinity regimes. On the diurnal scale, it was higher at night in comparison to the day at both E1 and E2. The higher abundance of zooplankton groups such as Copepoda, Cladocera, and planktonic larvae during the night at E1 as well as E2 indicating an upward migration. Many of the zooplankton taxa (e.g., Pseudodiaptomus serricaudatus, Pseudodiaptomus sp., Acartia danae, Acrocalanus longicornis, Oithona sp., Corycaeus andrewsi) migrated towards E1 due to tidal effect during high tide and maintained their position even during low tide. In contrast, the prevalence of limnetic taxa (e.g., Brachionus rubens, Polyarthra vulgaris, Bosminopsis deitersi, Moina micrura, Heliodiaptomus sp.) at E2 during low tide indicated a predominant riverine source. The tidal variability of Brachyura (zoea and megalopa) revealed different emergence times that indicated dispersal of zoeas to the adjacent Bay of Bengal and the return of magalopa to the Mahanadi Estuary. Species diversity index was higher during high tide, and prominent at E2. At E1, marine, fresh, marine-brackish, and marine-brackish-fresh zooplankton species dominated during high tide, while brackish-fresh taxa dominated during low tide. Differently, E2 was enriched with marine, marine-brackish, and marine-brackish-fresh taxa during high tide, whereas fresh, brackish-fresh, and marine-fresh dominated during low tide. Salinity and suspended matter influenced the dominant zooplankton taxa at E2 and E1, respectively. Zooplankton assemblages exhibited a pattern of prominent diurnal-spatial variation in comparison to the tidal scale in the Mahanadi Estuary. Overall, this study documented a very high zooplankton diversity (92 taxa belonging to 13 groups) and significant variations in species abundance which highlighted the importance of carrying out sampling over the tidal cycle at contrasting salinity regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed are included in the manuscript.

References

  • Abo-Taleb, H. (2019). Importance of plankton to fish community. In Y. Bozkurt (Eds.), Biological research in aquatic science. Intech Open.

  • Acharyya, T., Sudatta, B. P., Raulo. S., Singh, S., Srichandan, S., Baliarsingh, S. K., Samanta, A., & Lotliker, A. A. (2021). A systematic review of biogeochemistry of Mahanadi River estuary: Insights and future research direction. In S. Das, & T. Ghosh, (Eds.), Estuarine biogeochemical dynamics of the east coast of India. Springer.

  • Alfonso, G., Belmonte, G., Marrone, F., & Naselli-Flores, L. (2010). Does lake age affect zooplankton diversity in Mediterranean lakes and reservoirs? A case study from southern Italy. Hydrobiologia, 653, 149–164.

    CAS  Google Scholar 

  • Ali, M. A. (2015). Arabian Gulf food web and the effect of salinity on feeding and growth rate of young threespine sticklebacks (Gasterosteus aculeatus). Doctoral dissertation, University of Sheffield.

  • Ali, M., Al-Mutairi, M., Subrahmanyam, M. N. V., Isath, S., AlAwadi, M. A., Kumar, P. N., Al-Hebini, K., & Omar, S. A. S. (2019). Temporal variations in abundance and species richness of zooplankton with emphasis on ichthyoplankton in the subtidal waters of Umm Al-Namil Island, Northwestern Arabian Gulf of the ROPME Sea Area. American Journal of Environmental Science, 15, 188–204.

    Google Scholar 

  • Ali, M., Al-Yamani, F., & Polikarpov, I. (2011). The effect of tidal cycles on the community structure of plankton (with emphasis on copepods) at AFMED Marina in winter (a preliminary study). Crustaceana, 84(5–6), 601–621.

    Google Scholar 

  • Al-Yamani, F. Y., Skryabin, V., Gubanova, A., Khvorov, S., & Prusova, I. (2011). Marine zooplankton practical guide for the Northwestern Arabian Gulf. (Vol. 1)Kuwait Institute for Scientific Research.

    Google Scholar 

  • Anandavelu, I., Robin, R. S., Purvaja, R., Ganguly, D., Hariharan, G., Raghuraman, R., Prasad, M. H. K., & Ramesh, R. (2020). Spatial heterogeneity of mesozooplankton along the tropical coastal waters. Continental Shelf Research, 206, 104193.

    Google Scholar 

  • Anger, K., Spivak, E., & Luppi, T. (1998). Effects of reduced salinities on development and bioenergetics of early larval shore crab, Carcinus maenas. Journal of Experimental Marine Biology and Ecology, 220, 287–304.

    Google Scholar 

  • Arcifa, M. S., Perticarrari, A., Bunioto, T. C., Domingos, A. R., & Minto, W. J. (2016). Microcrustaceans and predators: Diel migration in a tropical lake and comparison with shallow warm lakes. Limnetica, 35(2), 281–296.

    Google Scholar 

  • Ayon, P., Criales-Hernandez, M. I., Schwamborn, R., & Hirche, H. J. (2008). Zooplankton research off Peru: A review. Progresses in Oceanography, 79, 238–255.

    Google Scholar 

  • Baliarsingh, S. K., Lotliker, A. A., Srichandan, S., Basu, A., Nair, T. M. B., & Tripathy, S. K. (2021a). Effect of Tidal Cycle on Escherichia coli Variability in a Tropical Estuary. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-021-03106-w

    Article  Google Scholar 

  • Baliarsingh, S. K., Lotliker, A. A., Srichandan, S., Roy, R., Sahu, B. K., Samanta, A., Nair, T. M. B., Acharyya, T., Parida, C., Singh, S., & Jena, A. K. (2021b). Evaluation of hydro-biological parameters in response to semi-diurnal tides in a tropical estuary. Ecohydrology and Hydrobiology. https://doi.org/10.1016/j.ecohyd.2021.03.002

    Article  Google Scholar 

  • Bastia, F., & Equeenuddin, S. M. (2016). Spatio-temporal variation of water flow and sediment discharge in the Mahanadi River, India. Global and Planetary Change, 144, 51–66.

    Google Scholar 

  • Battish, S. K. (1992). Fresh water Zooplankton of India. Oxford and IBH Publishing Co.

    Google Scholar 

  • Borole, D. V., Somayajulu, B. L. K., Mohanti, M., & Ray, S. B. (1979). Preliminary investigations on dissolved uranium and silicon and major elements in the Mahanadi estuary. Proceedings of the Indian Academy of Sciences, 88, 161–170.

    Google Scholar 

  • Chakrapani, G. J., & Subramanian, V. (1990). Factors controlling sediment discharge in the Mahanadi River Basin. India. Journal of Hydrology, 117(1–4), 169–185.

    Google Scholar 

  • Chew, L. L., & Chong, V. C. (2011). Copepod community structure and abundance in a tropical mangrove estuary, with comparisons to coastal waters. Hydrobiologia, 666, 127–143.

    Google Scholar 

  • Chew, L. L., Chong, V. C., Ooi, A. L., & Sasekumar, A. (2015). Vertical migration and positioning behavior of copepods in a mangrove estuary: Interactions between tidal, diel light and lunar cycles. Estuaries Coastal and Shelf Science, 152, 142–152.

    Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation. (p. 144). PRIMER-E.

    Google Scholar 

  • Connelly, K. A., Rollwagen-Bollens, G., & Bollens, S. M. (2020). Seasonal and longitudinal variability of zooplankton assemblages along a river-dominated estuarine gradient. Estuaries Coastal and Shelf Science, 245, 106980.

    Google Scholar 

  • Conway, D. V., White, R. G., Hugues-Dit-Ciles, J., Gallienne, C. P., & Robins, D. B. (2003). Guide to the coastal and surface zooplankton of the south-western Indian Ocean. Occasional Publication of the Marine Biological Association of the United Kingdom No. 15, Plymouth.

  • da Costa, K. G., Bezerra, T. R., Monteiro, M. C., Vallinoto, M., Berredo, J. F., Pereira, L. C. C., & da Costa, R. M. (2013). Tidal-induced changes in the zooplankton community of an Amazon estuary. Journal of Coastal Research, 29(4), 756–765.

    Google Scholar 

  • Davies, O. A., & Ugwumba, O. A. (2013). Effects of tide on zooplankton community of a tributary of upper bonny estuary, Niger Delta, Nigeria. International Journal of Scientific Research in Knowledge, 1(9), 325–342.

    Google Scholar 

  • Dittel, A. I., & Epifanio, C. E. (1990). Seasonal and tidal abundance of crab larvae in a tropical mangrove system, Gulf of Nicoya. Costa Rica. Marine Ecology Progress Series, 65(1), 25–34.

    Google Scholar 

  • Gajbhiye, S. N., Nair, V. R., & Desai, B. N. (1984). Diurnal variation of zooplankton in Malad creek, Bombay. Indian Journal of Marine Sciences, 13, 75–79.

    CAS  Google Scholar 

  • Ganguly, D., Dey, M., Chowdhury, C., Pattnaik, A. A., Sahu, B. K., & Jana, T. K. (2011). Coupled micrometeorological and biological processes on atmospheric CO2 concentrations at the land-ocean boundary. NE coast of India. Atmospheric Environment, 45(23), 3903–3910.

    CAS  Google Scholar 

  • Gao, X., Song, J., & Li, X. (2011). Zooplankton spatial and diurnal variations in the Changjiang River estuary before operation of the Three Gorges Dam. Chinese Journal of Oceanology and Limnology, 29(3), 591–602.

    Google Scholar 

  • Gazeau, F., Gattuso, J. P., Middelburg, J. J., Brion, N., Schiettecatte, L. S., Frankignoulle, M., & Borges, A. V. (2005). Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt estuary). Estuaries, 28, 868–883.

    CAS  Google Scholar 

  • Grasshoff, K., Kremling, K., & Ehrhardt, M. (1999). Methods of seawater analysis. (3rd ed.). Verlag Chemie GmbH. Wiley-VCH, New York.

    Google Scholar 

  • Grecay, P. A., & Targett, T. E. (1996). Effects of turbidity, light level and prey concentration on feeding of juvenile weakfish Cynoscion regalis. Marine Ecology Progress Series, 131, 11–16.

    Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.

    Google Scholar 

  • Hart, R. C., & Allanson, B. R. (1976). The distribution and diel vertical migration of Pseudodiaptomus hessei (Mrázek) (Calanoida: Copepoda) in a subtropical lake in southern Africa. Freshwater Biology, 6(2), 183–198.

    Google Scholar 

  • Hattori, H. (1989). Bimodal vertical distribution and diel migration of the copepods Metridia pacifica, M. okhotensis and Pleuromamma cutullata in the western North Pacific Ocean. Marine Biology, 103, 39–50.

    Google Scholar 

  • Hovel, K. A., & Morgan, S. G. (1997). Planktivory as a selective force for reproductive synchrony and larval migration. Marine Ecology Progress Series, 157, 79–95.

    Google Scholar 

  • Jacoby, C. A., & Greenwood, J. G. (1989). Emergent zooplankton in Moreton Bay, Queensland, Australia: Seasonal, lunar, and diel patterns in emergence and distribution with respect to substrata. Marine Ecology Progress Series, 51, 13–154.

    Google Scholar 

  • Jessopp, M. J., & McAllen, R. J. (2008). Go with the flow: Tidal import and export of larvae from semi-enclosed bays. Hydrobiologia, 606, 81–92.

    Google Scholar 

  • Karabin, A. (1985). Pelagic zooplankton (Rotaria+ Crustacea) variation in the process of lake eutrophication. II: Modifying effect of biotic agents. Ekologia Polska, 33(4), 617–644.

  • Kouassi, E., Pagano, M., Saint-Jean, L., Arfi, R., & Bouvy, M. (2001). Vertical migrations and feeding rhythms of Acartiaclausi and Pseudodiaptomushessei (Copepoda: Calanoida) in a tropical lagoon (Ebrié, Côte d’Ivoire). Estuary Coastal and Shelf Science, 52(6), 715–728.

    CAS  Google Scholar 

  • Krumme, U., & Liang, T. H. (2004). Tidal-induced changes in a copepod-dominated zooplankton community in a macrotidal mangrove channel in northern Brazil. Zoological Studies, 43(2), 404–414.

    Google Scholar 

  • Leandro, S. M., Morgado, F., Pereira, F., & Queiroga, H. (2007). Temporal changes of abundance, biomass and production of copepod community in a shallow temperate estuary (Ria de Aveiro, Portugal). Estuary Coastal and Shelf Science, 74(1–2), 215–222.

    Google Scholar 

  • Loose, C. J., & Dawidowicz, P. (1994). Trade-offs in diel vertical migration by zooplankton: The costs of predator avoidance. Ecology, 75(8), 2255–2263.

    Google Scholar 

  • Lopes, M. R. M., Ferragut, C., & Mattos Bicudo, C. E. D. (2009). Phytoplankton diversity and strategies in regard to physical disturbances in a shallow, oligotrophic, tropical reservoir in Southeast Brazil. Limnetica, 28(1), 159–174.

    Google Scholar 

  • Lopez-Duarte, P. C., Christy, J. H., & Tankersley, R. A. (2011). A behavioral mechanism for dispersal in fiddler crab larvae (genus Uca) varies with adult habitat, not phylogeny. Limnology and Oceanography, 56(5), 1879–1892.

    Google Scholar 

  • Madhupratap, M., & Rao, T. S. S. (1979). Tidal and diurnal influence on estuarine zooplankton. Indian Journal of Marine Sciences, 8, 9–11.

    Google Scholar 

  • Margalef, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton. In A. A. Buzzati-Traverso (Ed.), Perspectives in marine biology. (pp. 323–349). University of California Press.

    Google Scholar 

  • Marques, S. C., Azeiteiro, U. M., Martinho, F., Viegas, I., & Pardal, M. A. (2009). Evaluation of estuarine mesozooplankton dynamics at a fine temporal scale: The role of seasonal, lunar and diel cycles. Journal of Plankton Research, 31(10), 1249–1263.

    Google Scholar 

  • Menendez, M. C., Dutto, M. S., Piccolo, M. C., & Hoffmeyer, M. S. (2012). The role of the seasonal and semi-diurnal tidal cycle on mesozooplankton variability in a shallow mixed estuary (Bahía Blanca, Argentina). ICES Journal of Marine Science, 69(3), 389–398.

    Google Scholar 

  • Menon, H. B., Sangekar, N. P., Lotliker, A. A., & Vethamony, P. (2011). Dynamics of chromophoric dissolved organic matter in Mandovi and Zuari estuaries—A study through in situ and satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 66(4), 545–552.

    Google Scholar 

  • Micheli, F. (1999). Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science, 285, 1396–1398.

    CAS  Google Scholar 

  • Mishra, R. K., Shaw, B. P., Sahu, B. K., Mishra, S., & Senga, Y. (2009). Seasonal appearance of Chlorophyceae phytoplankton bloom by river discharge off Paradeep at Orissa Coast in the Bay of Bengal. Environmental Monitoring and Assessment, 149, 261–273.

    CAS  Google Scholar 

  • Morgan, C. A., Cordell, J. R., & Simenstad, C. A. (1997). Sink or swim? Copepod population maintenance in the Columbia River estuarine turbidity-maxima region. Marine Biology, 129, 309–317.

    Google Scholar 

  • Murali, R. M., Dhiman, R., Choudhary, R., Seelam, J. K., Ilangovan, D., & Vethamony, P. (2015). Decadal shoreline assessment using remote sensing along the central Odisha coast, India. Environmental Earth Sciences, 74, 7201–7213.

    Google Scholar 

  • Naik, S., Mishra, R. K., Panda, U. S., Mishra, P., & Panigrahy, R. C. (2020). Phytoplankton community response to environmental changes in Mahanadi Estuary and its adjoining coastal waters of Bay of Bengal: A multivariate and remote sensing approach. Remote Sensing in Earth Systems Sciences, 3(1), 110–122.

    Google Scholar 

  • Nandy, T., & Mandal, S. (2020). Unravelling the spatio-temporal variation of zooplankton community from the river Matla in the Sundarbans Estuarine System. India. Oceanologia, 62(3), 326–346.

    Google Scholar 

  • Oishi, K., & Saigusa, M. (1997). Nighttime emergence patterns of planktonic and benthic crustaceans in a shallow subtidal environment. Journal of Oceanography, 53, 611–621.

    Google Scholar 

  • Panda, U. C., Sundaray, S. K., Rath, P., Nayak, B. B., & Bhatta, D. (2006). Application of factor and cluster analysis for characterization of river and estuarine water systems–a case study: Mahanadi River (India). Journal of Hydrology, 331(3–4), 434–445.

    CAS  Google Scholar 

  • Paradeep Fishing Harbour (2020). http://www.msfhparadeep.com/. Accessed on 13 Dec 2020.

  • Paula, J., Bartilotti, C., Dray, T., Macia, A., & Queiroga, H. (2004). Patterns of temporal occurrence of brachyuran crab larvae at Saco mangrove creek, Inhaca Island (South Mozambique): Implications for flux and recruitment. Journal of Plankton Research, 26(10), 1163–1174.

    Google Scholar 

  • Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144.

    Google Scholar 

  • Raj, S., Jee, P. K., & Panda, C. R. (2013). Textural and heavy metal distribution in sediments of Mahanadi estuary, East coast of India. Indian Journal of Geo-Marine Sciences, 42(3), 370–374.

    CAS  Google Scholar 

  • Rao, A. D., Dash, S., & Babu, S. V. (2004). Numerical study of the circulation and sediment transport in the Mahanadi Estuary. Natural Hazards, 32, 219–237.

    Google Scholar 

  • Raymont, J. E. G. (1983). Plankton and productivity in the oceans. 2nd edition, Volume 2-Zooplankton. Pergamon Press, Oxford.

  • Robertson, A. I., Dixon, P., & Daniel, P. A. (1988). Zooplankton dynamics in mangrove and other nearshore habitats in tropical Australia. Marine Ecology Progress Series, 43, 139–150.

    Google Scholar 

  • Samantray, P., Mishra, B. K., Panda, C. R., & Rout, S. P. (2009). Assessment of water quality index in Mahanadi and Atharabanki Rivers and Taldanda Canal in Paradip area. India. Journal of Human Ecology, 26(3), 153–161.

    Google Scholar 

  • Shang, X., Wang, G., & Li, S. (2008). Resisting flow–laboratory study of rheotaxis of the estuarine copepod Pseudodiaptomus annandalei. Marine and Freshwater Behaviour Physiology, 41(2), 109–124.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. University of Illinois Press.

    Google Scholar 

  • Sivasankar, R., Ezhilarasan, P., Kumar, P. S., Naidu, S. A., Rao, G. D., Kanuri, V. V., Rao, V. R., & Ramu, K. (2018). Loricate ciliates as an indicator of eutrophication status in the estuarine and coastal waters. Marine Pollution Bulletin, 129(1), 207–211.

    CAS  Google Scholar 

  • Srichandan, S., Baliarsingh, S. K., Prakash, S., Lotliker, A. A., Parida, C., & Sahu, K. C. (2019). Seasonal dynamics of phytoplankton in response to environmental variables in contrasting coastal ecosystems. Environmental Science and Pollution Research, 26, 12025–12041

    CAS  Google Scholar 

  • Srichandan, S., Tarafdar, L., Muduli, P. R., & Rastogi, G. (2021). Spatiotemporal patterns and impact of a cyclone on the zooplankton community structure in a brackish coastal lagoon. Regional Studies in Marine Science, 101743.

  • Steinberg, D. K., & Landry, M. R. (2017). Zooplankton and the ocean carbon cycle. Annual Review of Marine Science, 9, 413–444.

    Google Scholar 

  • Sundaray, S. K., Nayak, B. B., & Bhatta, D. (2009). Environmental studies on river water quality with reference to suitability for agricultural purposes: Mahanadi river estuarine system, India—A case study. Environmental Monitoring and Assessment, 155, 227–243.

    CAS  Google Scholar 

  • Tackx, M. L., De Pauw, N., Van Mieghem, R., Azémar, F., Hannouti, A., Van Damme, S., Fiers, F., Daro, N., & Meire, P. (2004). Zooplankton in the Schelde estuary, Belgium and The Netherlands. Spatial and temporal patterns. Journal of Plankton Research, 26(2), 133–141.

  • Thakur, R. K., Jindal, R., Singh, U. B., & Ahluwalia, A. S. (2013). Plankton diversity and water quality assessment of three freshwater lakes of Mandi (Himachal Pradesh, India) with special reference to planktonic indicators. Environmental Monitoring and Assessment, 185(10), 8355–8373.

    CAS  Google Scholar 

  • Venkataramana, V., Sarma, V. V. S. S., & Reddy, A. M. (2017). River discharge as a major driving force on spatial and temporal variations in zooplankton biomass and community structure in the Godavari estuary India. Environmental Monitoring and Assessment, 189(9), 474.

    CAS  Google Scholar 

  • Villate, F. (1997). Tidal influence on zonation and occurrence of resident and temporary zooplankton in a shallow system (estuary of Mundaka, Bay of Biscay). Scientia Marina, 61(2), 173–188.

    Google Scholar 

  • Vineetha, G., Jyothibabu, R., Madhu, N. V., Kusum, K. K., Sooria, P. M., Shivaprasad, A., Reny, P. D., & Deepak, M. P. (2015). Tidal influence on the diel vertical migration pattern of zooplankton in a Tropical Monsoonal Estuary. Wetlands, 35, 597–610.

    Google Scholar 

  • Walter, T. C. (1987). Review of the taxonomy and distribution of the demersal copepod genus Pseudodiaptomus (Calanoida: Pseudodiaptomidae) from southern Indo-West Pacific waters. Australian Journal of Marine and Freshwater Research, 38(3), 363–396.

    Google Scholar 

  • Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P., & Breckenridge, J. K. (2011). Toward a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnology and Oceanography, 6(5), 1603–1623.

    Google Scholar 

  • Winder, M., & Jassby, A. D. (2011). Shifts in zooplankton community structure: Implications for food web processes in the upper San Francisco Estuary. Estuaries and Coasts, 34, 675–690.

    Google Scholar 

  • Wooldridge, T. H. (1999). Estuarine zooplankton community structure and dynamics. In B. R. Allanson & D. Baird (Eds.), Estuaries of South Africa. (pp. 141–166). Cambridge University Press.

    Google Scholar 

  • World Register of Marine Species (2021). Retrieved April 27, 2021, from http://www.marinespecies.org/

  • Youn, S. H., & Choi, J. K. (2008). Distribution pattern of zooplankton in the Han River estuary with respect to tidal cycle. Ocean Science Journal, 43(3), 135–146.

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director, Indian National Centre for Ocean Information Services (INCOIS), Ministry of Earth Sciences, Hyderabad, India, for the encouragement. One of the authors (RR) is thankful to Director, National Remote Sensing Centre (NRSC), for his constant support. Authors express their deep gratitude to Dr. Paula Reis of Université du Québec à Montréal (UQAM), Canada, for her help in editing the manuscript. This is INCOIS contribution no. 415.

Funding

This study has been undertaken as a part of the project entitled “Coastal Monitoring” under the umbrella of “Ocean Services, Modelling, Application, Resources and Technology (O-SMART)” scheme, sanctioned by the Indian Ministry of Earth Sciences (MoES) vide Administrative Order no. MoES/36/OOIS/CM/2019 dated 07–05-2019. A part of the funding was received from Indian Space Research Organisation (ISRO)-National Carbon Project—Coastal Carbon Dynamics (NCP-CCD).

Author information

Authors and Affiliations

Authors

Contributions

AAL conceived and conceptualized the study; SS, SKB, AAL, BKS, and RR collected the data; SS and SKB carried out laboratory analysis; SS, SKB, AAL, BKS, and RR interpreted data; SS prepared the first draft of manuscript with critical input of SKB and AAL; SS and SKB prepared the graphical illustrations with substantial input of AAL and RR; TMB, RR, and BKS reviewed, edited, and revised the manuscript; TMB supervised the entire study; AAL, RR, and TMB acquired funding resource. SS and SKB revised the manuscript as per the reviewer’s comments with critical input from AAL. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Aneesh Anandrao Lotliker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• First report of tidal zooplankton dynamics in contrasting salinity regimes

• Catalogued 92 zooplankton taxa belonging to 13 groups indicating higher diversity

• Higher zooplankton abundance during high tide and night irrespective of salinity regimes

• Prominent variability of zooplankton abundance at diurnal scale in the lower estuary

• Prevalence of limnetic taxa in the lower estuary during low tide

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srichandan, S., Baliarsingh, S.K., Lotliker, A.A. et al. Unravelling tidal effect on zooplankton community structure in a tropical estuary. Environ Monit Assess 193, 362 (2021). https://doi.org/10.1007/s10661-021-09112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09112-z

Keywords

Navigation