Skip to main content

Eco-efficiency evaluation in wastewater treatment plants considering greenhouse gas emissions through the data envelopment analysis-tolerance model

Abstract

The eco-efficiency evaluation in wastewater treatment plants (WWTPs) is used to know and improve the environmental and economic efficiency of these processes, systems, products, and services. The eco-efficiency evaluations in WWTP contemplate the inputs to be minimized, the desirable results to be maximized, and the undesired results to be minimized. Data envelopment analysis (DEA) is a widely used method to evaluate the eco-efficiency of WWTPs; integrating several approaches in a single index, traditional DEA models do not take into account the uncertainty in the data. This study evaluates the eco-efficiency of a sample of Catalan WWTPs, considering the uncertainty of the data (DEA tolerance model), and it is for the first time that together with CO2, other greenhouse gas (GHG) such as CH4 and N2O are considered as part of the process outputs. GHG emissions were quantified using methods reported in the literature. Seven hundred twenty-nine eco-efficiency scores were estimated for each WWTP instead of a single score like conventional DEA models, analyzing optimistic and pessimistic scenarios. The WWTPs were classified according to the estimated eco-efficiency scores, accounting for the uncertainty in each of the scenarios, and demonstrating the changes in the performance of the WWTPs in the different scenarios. Only two WWTPs were eco-efficient in all the scenarios evaluated. This approach provides essential information to improve efficiency and innovation in the wastewater sector.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

Data available and provides by the Technical area of Metropolitan Area of Barcelona.

References

  1. Agència Catalana de l`Aigua. (2020). Preu de l’aigua, composició, serveis i altres conceptes. Agència Catalana de l’Aigua. Generalitat de Catalunya. http://aca.gencat.cat/ca/laca/observatori-del-preu-de-laigua/preu-de-laigua-composicio-serveis-i-altres-conceptes/index.html. Accessed 25 Feb 2020

  2. AMB. (2016). Datos Estadísticos. Àrea Metropolitana De Barcelona. http://www.amb.cat/es/web/medi-ambient/aigua/instalacions-i-equipaments/llistat?p_p_id=EquipamentSearchListPortlet_WAR_AMBSearchPortletportlet&p_p_lifecycle=1&p_p_state=normal&_EquipamentSearchListPortlet_WAR_AMBSearchPortletportlet_pageNum=1&_EquipamentS. Accessed 15 May 2016

  3. Beltrán-Esteve, M., Reig-Martínez, E., & Estruch-Guitart, V. (2017). Assessing eco-efficiency: A metafrontier directional distance function approach using life cycle analysis. Environmental Impact Assessment Review, 63, 116–127. https://doi.org/10.1016/j.eiar.2017.01.001

    Article  Google Scholar 

  4. Boscá, J. E., Liern, V., Sala, R., & MartÍnez, A. (2011). Ranking decision making units by means of soft computing DEA models. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 19(1), 115–134. https://doi.org/10.1142/S0218488511006915

    Article  Google Scholar 

  5. Caiado, R. G. G., de Freitas Dias, R., Mattos, L. V., Quelhas, O. L. G., & Leal Filho, W. (2017, November 1). Towards sustainable development through the perspective of eco-efficiency - A systematic literature review. Journal of Cleaner Production. Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2017.07.166

  6. CH2M HILL (2007). Discussion Paper for a Wastewater Treatment Plant Sector Greenhouse Gas Emissions Reporting Protocol. , California Wastewater Climate Group and Bay Area Clean Water Agencies. Oakland, California. http://scap1.org/AirReferenceLibrary/070903FinalWWTPEmissionsDiscussionPaper.pdf

  7. Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. Company European Journal of Operational Research, 2, 429–444.

    Article  Google Scholar 

  8. Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software: Second edition. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software: Second Edition. Springer US. https://doi.org/10.1007/978-0-387-45283-8

  9. Delre, A., Mønster, J., & Scheutz, C. (2017). Greenhouse gas emission quantification from wastewater treatment plants, using a tracer gas dispersion method. Science of The Total Environment, 605–606, 258–268. https://doi.org/10.1016/J.SCITOTENV.2017.06.177

    Article  Google Scholar 

  10. Dyson, R. G., & Shale, E. A. (2010). Data Envelopment Analysis, Operational Research and Uncertainty. The Journal of the Operational Research Society. Palgrave Macmillan JournalsOperational Research Society. https://doi.org/10.2307/40540225

  11. FAO. (2019). Food consumption. FAO. http://www.fao.org/search/es/?cx=018170620143701104933%3Aqq82jsfba7w&q=protein+consumption&cof=FORID%3A9&siteurl=www.fao.org%2Fhome%2Fes%2F&ref=www.google.com%2F&ss=7046j4174570j19. Accessed 13 March 2019.

  12. Farrell, A. E., Kerr, A. C., Brandt, A. R., Franco, G., Barkalow, G., & Energy-related, P. Research Roadmap for Greengouse Gas Inventory Methods, California Energy Commission. (2005). California. http://www.energy.ca.gov/2005publications/CEC-500-2005-097/CEC-500-2005-097.PDF

  13. Fujii, H., Managi, S., & Matousek, R. (2014). Indian bank efficiency and productivity changes with undesirable outputs: A disaggregated approach. Journal of Banking & Finance, 38, 41–50. https://doi.org/10.1016/j.jbankfin.2013.09.022

    Article  Google Scholar 

  14. García Besné, A., Luna, D., Cobos, A., Lameiras, D., Ortiz-Moreno, H., & Güereca, P. (2018). A methodological framework of eco-efficiency based on fuzzy logic and Life Cycle Assessment applied to a Mexican SME. Environmental Impact Assessment Review, 68, 38–48. https://doi.org/10.1016/j.eiar.2017.10.008

    Article  Google Scholar 

  15. GDRC. (2019). Sustainability Concepts: Eco-efficiency. Global Development Research Center. http://www.gdrc.org/sustdev/concepts/04-e-effi.html. Accessed 17 Feb 2020.

  16. Gémar, G., Gómez, T., Molinos-Senante, M., Caballero, R., & Sala-Garrido, R. (2018). Assessing changes in eco-productivity of wastewater treatment plants: The role of costs, pollutant removal efficiency, and greenhouse gas emissions. Environmental Impact Assessment Review, 69, 24–31. https://doi.org/10.1016/J.EIAR.2017.11.007

    Article  Google Scholar 

  17. Georgopoulou, A., Angelis-Dimakis, A., Arampatzis, G., & Assimacopoulos, D. (2014). Eco­efficiency assessment in the agricultural sector: The case of fresh form tomato crop in Phthiotida Eco-efficiency assessment in the agricultural sector: The case of fresh form tomato crop in Phthiotida.

  18. GHG Protocol. (2014). GHG Protocol Scope 2 Guidance. An amendment to the GHG Protocol Corporate Standard.

  19. Gómez, T., Gémar, G., Molinos-Senante, M., Sala-Garrido, R., & Caballero, R. (2018). Measuring the eco-efficiency of wastewater treatment plants under data uncertainty. Journal of Environmental Management, 226, 484–492. https://doi.org/10.1016/j.jenvman.2018.08.067

    Article  Google Scholar 

  20. Gupta, D., & Singh, S. K. (2012). greenhouse gas emissions from wastewater treatment plants: A case study of Noida. Journal of Water Sustainability, 2(2), 131–139.

    CAS  Google Scholar 

  21. Hreiz, R., Latifi, M. A., & Roche, N. (2015). Optimal design and operation of activated sludge processes: State-of-the-art. Chemical Engineering Journal, 281, 900–920. https://doi.org/10.1016/j.cej.2015.06.125

    CAS  Article  Google Scholar 

  22. Huppes, G., & Ishikawa, M. (2007). An introduction to quantified eco-efficiency analysis. In Quantified Eco-Efficiency (pp. 1–38). Springer, Dordrecht. https://doi.org/10.1007/1-4020-5399-1_1

  23. Hwang, K.-L., Bang, C.-H., & Zoh, K.-D. (2016). Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant. Bioresource Technology, 214, 881–884. https://doi.org/10.1016/j.biortech.2016.05.047

    CAS  Article  Google Scholar 

  24. IPCC. (2006). Capítulo 6: Tratamiento y eliminación de aguas residuales. In Volumen 5: Desechos (p. 31). http://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/pdf/5_Volume5/V5_6_Ch6_Wastewater.pdf. Accessed 15 March 2016.

  25. IPCC. (2015). Fifth Assessment Report - Synthesis Report by IPCC - issuu. IPCC. https://issuu.com/unipcc/docs/syr_ar5_final_full_wcover. Accessed 15 January 2020.

  26. IPCC. (2019). Chapter 6: Wastewater treatment and discharge. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Investories (p. 72).

  27. Jungdorf, S., Anthony, C., Morales Gabriela Y Hernández, M., Norma, C., Jungdor, S., Morales Gabriela, M., & Norma, H. C. (2017). EL Precio Del Tratamiento De Las Aguas Residuales. 3.er Congreso Nacional AMICA, 3. http://www.cepep.gob.mx/es/CEPEP/Materiales#Metodologias. Accessed 10 Feb 2020.

  28. Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., & Van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research, 43, 4093–4103. https://doi.org/10.1016/j.watres.2009.03.001

    CAS  Article  Google Scholar 

  29. Koopmans, T. (1951). Activity analysis of production and allocation. New York: Jonn Wiley & Sons. https://www.iberlibro.com/Activity-analysis-production-allocation-Proceedings-Conference/30328300413/bd. Accessed 17 August 2020.

  30. Lara, S., & Préndez, M. (2003). Aguas Servidas de la región Metropolitana como fuente de gases de efecto Invernadero (p. 12). Chile. https://www.researchgate.net/profile/Margarita_Prendez/publication/242664006_XV_CONGRESO_DE_INGENIERIA_SANITARIA_Y_AMBIENTAL_AIDIS-CHILE/links/0046352bc48c832ed1000000/XV-CONGRESO-DE-INGENIERIA-SANITARIA-Y-AMBIENTAL-AIDIS-CHILE.pdf

  31. Law, Y., Ye, L., Pan, Y., & Yuan, Z. (2012). Nitrous oxide emissions from wastewater treatment processes. Philosophical Transactions of The Royal Society B, 1265–1277.https://doi.org/10.1098/rstb.2011.0317

  32. Lorenzo-Toja, Y., Azquez-Rowe, V., & I., Chenel, S., Ee Marín-Navarro, D., Moreira, M. T., & Feijoo, G. . (2015). Eco-efficiency analysis of Spanish WWTPs using the LCA þ DEA method. Water Research, 68, 651–666. https://doi.org/10.1016/j.watres.2014.10.040

    CAS  Article  Google Scholar 

  33. Martzopoulou, A., & Komninos, N. (2019). The effect of solar energy on the environmental impacts and sustainability of food industry. Journal of Environmental Accounting and Management, 7(3), 303–321. https://doi.org/10.5890/jeam.2019.09.005

    Article  Google Scholar 

  34. Metcalf & Eddy, G., Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., Burton, F. L. (Franklin L., Abu-Orf, M., et al. (2014). Wastewater engineering : treatment and resource recovery (5th ed.). New York [etc.] : McGraw-Hill. http://cataleg.upc.edu/record=b1444219~S1*cat. Accessed 20 Nov 2017.

  35. Ministerio para la Transición Ecológica y el Reto Demográfico. (2018). Factores de emisión registro de huella de carbono, compensación y proyectos de absorción de dióxido de carbono.

  36. Molinos-Senante, M., Donoso, G., & Sala-Garrido, R. (2016a). Assessing the efficiency of Chilean water and sewerage companies accounting for uncertainty. Environmental Science and Policy, 61, 116–123. https://doi.org/10.1016/j.envsci.2016.04.003

    Article  Google Scholar 

  37. Molinos-Senante, M., On Sala-Garrido, R., & Hern Andez-Sancho, F. (2016b). Development and application of the Hicks-Moorsteen productivity index for the total factor productivity assessment of wastewater treatment plants. Journal of Cleaner Production, 112, 3116–3123. https://doi.org/10.1016/j.jclepro.2015.10.114

    Article  Google Scholar 

  38. Monastyrenko, E. (2017). Eco-efficiency outcomes of mergers and acquisitions in the European electricity industry. Energy Policy, 107, 258–277. https://doi.org/10.1016/j.enpol.2017.04.030

    Article  Google Scholar 

  39. Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., et al. (2013). Anthropogenic and Natural Radiative Forcing: In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/CBO9781107415324.018

  40. Nolasco, D. A. (2010). Desarrollo de proyectos MDL en plantas de tratamiento de aguas residuales. Banco Interamericano de Desarrollo. https://publications.iadb.org/handle/11319/5506

  41. Noyola, A., Paredes, M. G., Güereca, L. P., Molina, L. T., & Zavala, M. (2018). Methane correction factors for estimating emissions from aerobic wastewater treatment facilities based on field data in Mexico and on literature review. Science of the Total Environment, 639, 84–91. https://doi.org/10.1016/j.scitotenv.2018.05.111

    CAS  Article  Google Scholar 

  42. Paredes, M. G., Güereca, L. P., Molina, L. T., & A., N. (2015). Methane emissions from stabilization ponds for municipal wastewater treatment in Mexico. Journal of Integrative Environmental Sciences, 12, 139–153. https://www.tandfonline.com/doi/pdf/https://doi.org/10.1080/1943815X.2015.1110185?needAccess=true. Accessed 5 Oct 2019.

  43. Paredes, M. G., Güereca, L. P., Molina, L. T., & Noyola, A. (2019). Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 656, 468–474. https://doi.org/10.1016/j.scitotenv.2018.11.373

    CAS  Article  Google Scholar 

  44. Ramírez-Melgarejo, M., Reyes-Figueroa, A. D., Gassó-Domingo, S., & Güereca, L. P. (2020). Analysis of empirical methods for the quantification of N 2 o emissions in wastewater treatment plants: Comparison of emission results obtained from the IPCC tier 1 methodology and the methodologies that integrate operational data. Science of the Total Environment, 747, 141288. https://doi.org/10.1016/j.scitotenv.2020.141288

    CAS  Article  Google Scholar 

  45. Ren, J., & Liang, H. (2017). Multi-criteria group decision-making based sustainability measurement of wastewater treatment processes. Environmental Impact Assessment Review, 65, 91–99. https://doi.org/10.1016/j.eiar.2017.04.008

    Article  Google Scholar 

  46. Sala-Garrido, R., Hernández-Sancho, F., & Molinos-Senante, M. (2012). Assessing the efficiency of wastewater treatment plants in an uncertain context: A DEA with tolerances approach. Environmental Science and Policy, 18, 34–44. https://doi.org/10.1016/j.envsci.2011.12.012

    CAS  Article  Google Scholar 

  47. Schaltegger, S., & Sturm, A. (1989). Ecology induced management decision support. University of Basel.

    Google Scholar 

  48. Scheehle, E. A., & Doorn, M. R. . Improvements to the U.S. Wastewater Methane and Nitrous Oxide Emissions Estimates. , U.S. EPA (2004). Washington, DC. https://www3.epa.gov/ttnchie1/conference/ei12/green/scheehle.pdf

  49. Snip, L. (2010). Quantifying the greenhouse gas emissions of wastewater treatment plants. Wageningen University. Retrieved from http://edepot.wur.nl/138115

  50. Thomsen, M., & Lyck, E. (2005). Emission of CH4 and N2O from Wastewater Treatment Plants (6B). Water. Denmark. http://www2.dmu.dk/1_viden/2_publikationer/3_arbrapporter/rapporter/ar208.pdf

  51. Tsolas, I. E. (2010). Assessing power stations performance using a DEA-bootstrap approach. International Journal of Energy Sector Management, 4(3), 337–355. https://doi.org/10.1108/17506221011073833

    Article  Google Scholar 

  52. Yang, F., Yang, M., Xue, B., & Luo, Q. (2018). The effects of China’s western development strategy implementation on local ecological economic performance. Journal of Cleaner Production, 202, 925–933. https://doi.org/10.1016/j.jclepro.2018.08.203

    Article  Google Scholar 

  53. Zha, J., Yuan, W., Dai, J., Tan, T., & He, L. (2020). Eco-efficiency, eco-productivity and tourism growth in china: A non-convex metafrontier DEA-based decomposition model. Journal of Sustainable Tourism, 28(5), 663–685. https://doi.org/10.1080/09669582.2019.1699102

    Article  Google Scholar 

Download references

Acknowledgements

Monserrat G. Ramírez Melgarejo thanks CONACYT for the PhD scholarship. This work was supported by the operation data of the Technical Area of Sanitation and Inspection of the MAB.

Funding

Monserrat Ramírez-Melgarejo received a scholarship from CONACYT with agreement number 612685.

Author information

Affiliations

Authors

Contributions

Ramírez-Melgarejo, Monserrat: conceptualization, research, methodology, writing—original draft and edition of the final manuscript. Güereca, Leonor Patricia: supervision, review and editing. Gassó-Domingo, Santiago: definition, supervision, and review. Salgado, CD: implementation of the method of classification and calculation of descriptive statistics. Reyes-Figueroa, A.D.: implementation of the linear programming method and preparation of the methodology.

Corresponding author

Correspondence to Monserrat Ramírez-Melgarejo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Melgarejo, M., Güereca, L.P., Gassó-Domingo, S. et al. Eco-efficiency evaluation in wastewater treatment plants considering greenhouse gas emissions through the data envelopment analysis-tolerance model. Environ Monit Assess 193, 301 (2021). https://doi.org/10.1007/s10661-021-09063-5

Download citation

Keywords

  • Uncertainty
  • Environmental performance
  • Emission estimation
  • Process outputs
  • N2O emission
  • CH4 emission