Skip to main content

Advertisement

Log in

Effect of urban underlying surface on PM2.5 vertical distribution based on UAV in Xi’an, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Fine particulate matter (PM2.5) has become a significant issue of ecological environment. However, few studies have explored the vertical distribution of PM2.5 in cities. The objectives of this paper are to reveal the vertical distribution regular pattern of PM2.5 over urban underlying surfaces near the ground with a hexacopter-type unmanned aerial vehicle (UAV) in winter. Results showed that the maximum vertical gradient of PM2.5 near the ground was typically the greatest in the morning as the stable atmospheric conditions. Moreover, regression model illustrated that relative humidity had the greatest impact on the vertical profile of PM2.5 compared to air temperature and altitude as hygroscopic of PM2.5 aerosols. Curve model shown that vertical profile of PM2.5 over the surfaces of water and green space first increased slowly and then declined, besides, the highest concentration inflection of PM2.5 above the water body (23.7 m) is higher than the green space (14.3 m). Thus, suggesting residents living vertical of 10–30 m from the ground around large water bodies and green spaces should not open windows for ventilation in the morning. Therefore, this study provides insights into the vertical distributions of PM2.5 over different underlying surfaces and should be of reference value to urban planners for designing urban spaces to optimize atmosphere environment to provide a healthy living environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Anchordoqui, L. A., Dent, J. B., & Weiler, T. J. (2020). A physics modeling study of COVID-19 transport in air. SciMedicine Journal, 2, 83–91.

    Article  Google Scholar 

  • Achtert, P., Birmili, W., Nowak, A., Wehner, B., Wiedensohler, A., Takegawa, N., Kondo, Y., Miyazaki, Y., Hu, M., & Zhu, T. (2009). Hygroscopic growth of tropospheric particle number size distributions over the North China Plain. Journal of Geophysical Research, 114. https://doi.org/10.1029/2008jd010921

  • Angelevska, B., Atanasova, V., & Andreevski, I. (2021). Urban air quality guidance based on measures categorization in road transport. Civil Engineering Journal., 7(02), 253–267.

    Article  Google Scholar 

  • Bates, T. S., Quinn, P. K., Johnson, J. E., Corless, A., Brechtel, F. J., Stalin, S. E., Meinig, C., & Burkhart, J. F. (2013). Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS). Atmospheric Measurement Techniques, 6(8), 2115–2120. https://doi.org/10.5194/amt-6-2115-2013

    Article  CAS  Google Scholar 

  • Bilal, M., Nichol, J. E., Nazeer, M., Shi, Y., Wang, L. C., Kumar, K. R., Ho, H. C., Mazhar, U., Bleiweiss, M. P., Qiu, Z. F., Khedher, K. M., & Lolli, S. (2019a). "Characteristics of fine particulate matter (PM2.5) over urban, suburban, and rural areas of Hong Kong." Atmosphere 10 (9). https://doi.org/10.3390/atmos10090496

  • Bilal, M., Nichol, J. E., Nazeer, M., Shi, Y., Wang, L., Kumar, K. R., Ho, C. H., Mazhar, U., Bleiweiss, M. P., Qiu, Z., Khedher, K. M., & Lolli, S. (2019b). "Characteristics of fine particulate matter (PM2.5) over urban, suburban, and rural areas of Hong Kong." Atmosphere 10 (9). https://doi.org/10.3390/atmos10090496

  • Boreddy, S. K. R., Kawamura, K., Bikkina, S., & Sarin, M. M. (2016). Hygroscopic growth of particles nebulized from water-soluble extracts of PM2.5 aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways. Science of The Total Environment, 544, 661–669. https://doi.org/10.1016/j.scitotenv.2015.11.164

    Article  CAS  Google Scholar 

  • Chen, G., Zhang, W., Hou, Li. ’an, Yang, H., Yan, B., Tong, L., & Sun, Y. (2015). Pollution characteristics and influence factors of PM2.5 in summer in Jixian County of Tianjin. Journal of Tianjin University, 48(2), 95–102. https://doi.org/10.11784/tdxbz201405037

    Article  Google Scholar 

  • Chen, Q., Wang, D. S., Li, X. B., Li, B., Song, R. F., He, H. D., & Peng, Z. R. (2019a). "Vertical characteristics of winter ozone distribution within the boundary layer in shanghai based on hexacopter unmanned aerial vehicle platform." Sustainability 11 (24). https://doi.org/10.3390/su11247026

  • Chen, X. C., Chow, J. C., Ward, T. J., Cao, J. J., Lee, S. C., Watson, J. G., Lau, N. C., Yim, S. H. L., & Ho, K.-F. (2019b). Estimation of personal exposure to fine particles (PM2.5) of ambient origin for healthy adults in Hong Kong. Science of the Total Environment, 654, 514–524. https://doi.org/10.1016/j.scitotenv.2018.11.088

    Article  CAS  Google Scholar 

  • Chen, Y. C., Chang, C. C., Chen, W. N., Tsai, Y. J., & Chang, S. Y. (2018). Determination of the vertical profile of aerosol chemical species in the microscale urban environment. Environmental Pollution, 243, 1360–1367. https://doi.org/10.1016/j.envpol.2018.09.081

    Article  CAS  Google Scholar 

  • Chi, R., Chen, C., Hongyu Li, Lu., Pan, B. Z., Deng, F., & Guo, X. (2019). Different health effects of indoor- and outdoor-originated PM2.5 on cardiopulmonary function in COPD patients and healthy elderly adults. Indoor Air, 29(2), 192–201. https://doi.org/10.1111/ina.12521

    Article  CAS  Google Scholar 

  • Chin, K. S., Hiu, A. C., Siu, Y., Ying, S. Y. K., & Zhang, Y. (2017). Da Jiang Innovation, DJI: The future of possible. Academy of Asian Business Review, 3(2), 83–109.

    Article  Google Scholar 

  • David M., Seter S. (2019). Indoor air pollution related respiratory Ill Health, a sequel of biomass use. SciMedicine Journal., 1, 30–37.

    Article  Google Scholar 

  • D’Angelo, L., Rovelli, G., Casati, M., Sangiorgi, G., Perrone, M. G., Bolzacchini, E., & Ferrero, L. (2016). Seasonal behavior of PM2.5 deliquescence, crystallization, and hygroscopic growth in the Po Valley (Milan): Implications for remote sensing applications. Atmospheric Research, 176–177, 87–95. https://doi.org/10.1016/j.atmosres.2016.02.011

    Article  CAS  Google Scholar 

  • Egondi, T., Muindi, K., Kyobutungi, C., Gatari, M., & Rocklov, J. (2016). Measuring exposure levels of inhalable airborne particles (PM2.5) in two socially deprived areas of Nairobi, Kenya. Environmental Research, 148, 500–506. https://doi.org/10.1016/j.envres.2016.03.018

    Article  CAS  Google Scholar 

  • Fang, C., Zhang, Z., Jin, M., Zou, P., & Wang, Ju. (2017). Pollution characteristics of PM2.5 aerosol during haze periods in Changchun, China. Aerosol and Air Quality Research, 17(4), 888–895. https://doi.org/10.4209/aaqr.2016.09.0407

    Article  CAS  Google Scholar 

  • Fatima B., Ibrahim B., Nassima B., Oussama A., Rezak A. (2019). Bioindication of urban air polycyclic aromatic hydrocarbons using Petunia hybrida. Civil Engineering Journal., 5(6), 1305–1313.

    Article  Google Scholar 

  • Feng, Y., & Li, Y. (2018). Estimated spatiotemporal variability of total, direct and diffuse solar radiation across China during 1958–2016. International Journal of Climatology, 38(12), 4395–4404. https://doi.org/10.1002/joc.5676

    Article  Google Scholar 

  • Folkman, L., Stantic, B., Sattar, A., & Zhou, Y. (2016). EASE-MM: Sequence-based prediction of mutation-induced stability changes with feature-based multiple models. Journal of Molecular Biology, 428(6), 1394–1405. https://doi.org/10.1016/j.jmb.2016.01.012

    Article  CAS  Google Scholar 

  • Fu, X., Wang, S., Zhao, B., Xing, J., Cheng, Z., Liu, H., & Hao, J. (2013). Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China. Atmospheric Environment, 70, 39–50. https://doi.org/10.1016/j.atmosenv.2012.12.034

    Article  CAS  Google Scholar 

  • Goldberg, M. S., Wheeler, A. J., Burnett, R. T., Mayo, N. E., Valois, M. F., Brophy, J. M., & Giannetti, N. (2015). Physiological and perceived health effects from daily changes in air pollution and weather among persons with heart failure: A panel study. Journal of Exposure Science and Environmental Epidemiology, 25(2), 187–199. https://doi.org/10.1038/jes.2014.43

    Article  CAS  Google Scholar 

  • Gong, G. C., B. Han, J. A. Nicell, K. Chen, & K. Q. Li. (2005). Influence of indoor thermal stratification and indoor air stability on indoor pollution transport property. Edited by X. Yang, B. Zhao and R. Zhao, Indoor Air 2005: Proceedings of the 10th International Conference on Indoor Air Quality and Climate, Vols 1–5.

  • Han, L., Li, Y., Zhao, Y., Wang, Da., & Guo, S. (2019). Ground concentration distribution and source of PM_(2.5) in Guanzhong Region. Chinese Journal of Ecology, 38(8), 2500–2507

    Google Scholar 

  • Han, L., Zhao, J., Gao, Y., Gu, Z., Xin, K., & Zhang, J. (2020). Spatial distribution characteristics of PM2.5 and PM10 in Xi'an City predicted by land use regression models Sustainable Cities and Society 61 https://doi.org/10.1016/j.scs.2020.102329

  • He, Q., Zhou, G., Geng, F., Gao, W., & Wei, Yu. (2016). Spatial distribution of aerosol hygroscopicity and its effect on PM2.5 retrieval in East China. Atmospheric Research, 170, 161–167. https://doi.org/10.1016/j.atmosres.2015.11.011

    Article  CAS  Google Scholar 

  • Hou, Q., Xingqin An, Yu., Wang, Y. T., & Sun, Z. (2012). An assessment of China’s PM10-related health economic losses in 2009. Science of the Total Environment, 435, 61–65. https://doi.org/10.1016/j.scitotenv.2012.06.094

    Article  CAS  Google Scholar 

  • Hu, J., Li, Wu., Zheng, Bo., Zhang, Q., He, K., Chang, Q., Li, X., Yang, F., Ying, Qi., & Zhang, H. (2015). Source contributions and regional transport of primary particulate matter in China. Environmental Pollution, 207, 31–42. https://doi.org/10.1016/j.envpol.2015.08.037

    Article  CAS  Google Scholar 

  • Hung, H.-M., Wan-Jung, Lu., Chen, W.-N., Chang, C.-C., Chou, C. C. K., & Lin, P.-H. (2014). Enhancement of the hygroscopicity parameter kappa of rural aerosols in northern Taiwan by anthropogenic emissions. Atmospheric Environment, 84, 78–87. https://doi.org/10.1016/j.atmosenv.2013.11.032

    Article  CAS  Google Scholar 

  • Jung, J., Ippolito, C., Rogers, C., Kerczewski, R., Downey, A., & Matheou., K. (2018). Small unmanned aircraft electromagnetic interference (EMI) initial assessment, 2018 Integrated Communications, Navigation, Surveillance Conference.

  • Kajino, M., Ueda, H., Han, Z., Rei, K., Inomata, Y., & Kaku, H. (2017). Synergy between air pollution and urban meteorological changes through aerosol-radiation-diffusion feedback A case study of Beijing in January 2013. Atmospheric Environment, 171, 98–110. https://doi.org/10.1016/j.atmosenv.2017.10.018

    Article  CAS  Google Scholar 

  • Katata, G., Kajino, M., Matsuda, K., Takahashi, A., & Nakaya, Ko. (2014). A numerical study of the effects of aerosol hygroscopic properties to dry deposition on a broad-leaved forest. Atmospheric Environment, 97, 501–510. https://doi.org/10.1016/j.atmosenv.2013.11.028

    Article  CAS  Google Scholar 

  • Kinney, P. L., Gichuru, M. G., Volavka-Close, N., Ngo, N., Ndiba, P. K., Law, A., Gachanja, A., Gaita, S. M., Chillrud, S. N., & Sclar, E. (2011). Traffic impacts on PM2.5 air quality in Nairobi, Kenya. Environmental Science & Policy, 14(4), 369–378. https://doi.org/10.1016/j.envsci.2011.02.005

    Article  CAS  Google Scholar 

  • Kloucek, T., Komarek, J., Surovy, P., Hrach, K., Janata, P., & Vasicek, B. (2019). "The Use of UAV Mounted Sensors for Precise Detection of Bark Beetle Infestation." Remote Sensing 11 (13). https://doi.org/10.3390/rs11131561

  • Kong, L., Hu, M., Tan, Q., Miao, F. Qu, Y., An, J., Zhang, Y., Liu, X., Cheng, N., Deng Y., Zhai, R., & Wang, Z. (2019). Key role of atmospheric water content in the formation of regional haze in southern China Atmospheric Environment 216 https://doi.org/10.1016/j.atmosenv.2019.116918

  • Layth R. A., Mohammed N. A., Muhamad R. M. Y., Muhamad N. B., Mina S. M. (2019). Traffic congestion: Shift from private car to public transportation. Civil Engineering Journal., 6(8), 1547–1554.

    Article  Google Scholar 

  • Li, C., Jiamo, Fu., Sheng, G., Bi, X., Hao, Y., Wang, X., & Mai, B. (2005). Vertical distribution of PAHs in the indoor and outdoor PM2.5 in Guangzhou, China. Building and Environment, 40(3), 329–341. https://doi.org/10.1016/j.buildenv.2004.05.015

    Article  Google Scholar 

  • Li, Q., Li, Ju., Zheng, Z., Wang, Y., & Miao, Yu. (2019). Influence of mountain valley breeze and sea land breeze in winter on distribution of air pollutants in Beijing-Tianjin-Hebei region. Environmental Science, 40(2), 513–524

    Google Scholar 

  • Li, X. B., Wang, D. S., Lu, Q. C., Peng, Z. R., & Wang, Z. Y. (2018). Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements. Atmospheric Environment, 173, 62–71. https://doi.org/10.1016/j.atmosenv.2017.11.009

    Article  CAS  Google Scholar 

  • Li, X., Ma, Y., Wang, Y., Liu, N., & Hong, Ye. (2017). Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China. Atmospheric Research, 198, 185–193. https://doi.org/10.1016/j.atmosres.2017.08.023

    Article  CAS  Google Scholar 

  • Liu, B., Wu, C., Ma, N., Chen, Q., Li, Y.W., Ye, J. H., Martin, S. T., & Li, Y. J. (2020a). Vertical profiling of fine particulate matter and black carbon by using unmanned aerial vehicle in Macau, China Science of the Total Environment 709 https://doi.org/10.1016/j.scitotenv.2019.136109

  • Liu, F., Zheng, X., & Qian, H. (2018). Comparison of particle concentration vertical profiles between downtown and urban forest park in Nanjing (China). Atmospheric Pollution Research, 9(5), 829–839. https://doi.org/10.1016/j.apr.2018.02.001

    Article  CAS  Google Scholar 

  • Liu, G., & Sun, J. (2010). Impact of surface variations on the momentum flux above the urban canopy. Theoretical and Applied Climatology, 101(3–4), 411–419. https://doi.org/10.1007/s00704-009-0219-5

    Article  Google Scholar 

  • Liu, T., Clegg, S. L., & Abbatt, J. P. D. (2020b). Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles. Proc Natl Acad Sci U S A, 117(3), 1354–1359. https://doi.org/10.1073/pnas.1916401117

    Article  CAS  Google Scholar 

  • Lu, S.-J., Wang, D., Wang, Z., Li, B., Peng, Z.-R., Li, X.-B., & Gao, Ya. (2019). Investigating the role of meteorological factors in the vertical variation in PM2.5 by unmanned aerial vehicle measurement. Aerosol and Air Quality Research, 19(7), 1493–1507. https://doi.org/10.4209/aaqr.2018.07.0266

    Article  CAS  Google Scholar 

  • Luce, H., Kantha, L., Hashiguchi, H., & Lawrence, D. (2019). "Estimation of turbulence parameters in the lower troposphere from ShUREX (2016–2017) UAV data." Atmosphere 10 (7). https://doi.org/10.3390/atmos10070384

  • Mader, B. T., Yu, J. Z., Xu, J. H., Li, Q. F., Wu, W. S., Flagan, R. C., & Seinfeld, J. H. (2004). "Molecular composition of the water-soluble fraction of atmospheric carbonaceous aerosols collected during ACE-Asia." Journal of Geophysical Research: Atmospheres 109 (D6):n/a-n/a. https://doi.org/10.1029/2003jd004105

  • Manju, A., Kalaiselvi, K., Dhananjayan, V., Palanivel, M., Banupriya, G. S., Vidhya, M. H., Panjakumar, K., & Ravichandran, B. (2018). Spatio-seasonal variation in ambient air pollutants and influence of meteorological factors in Coimbatore, Southern India. Air Quality Atmosphere and Health, 11(10), 1179–1189. https://doi.org/10.1007/s11869-018-0617-x

    Article  CAS  Google Scholar 

  • Miao, Y. C., Liu, S. H., Guo, J. P., Yan, Y., Huang, S. X., Zhang, G., Zhang, Y., & Lou, M. Y. (2018). Impacts of meteorological conditions on wintertime PM2.5 pollution in Taiyuan, North China. Environmental Science and Pollution Research, 25(22), 21855–21866. https://doi.org/10.1007/s11356-018-2327-1

    Article  CAS  Google Scholar 

  • Molnár, A., Imre, K., Ferenczi, Z., Kiss, G., & Gelencsér, A. (2020). Aerosol hygroscopicity: Hygroscopic growth proxy based on visibility for low-cost PM monitoring. Atmospheric Research, 236, 104815. https://doi.org/10.1016/j.atmosres.2019.104815

    Article  CAS  Google Scholar 

  • Montes, M. L., Rivas, P. C., Taylor, M. A., & Mercader, R. C. (2016). Approximate total Fe content determined by Mossbauer spectrometry: Application to determine the correlation between gamma-ray-emitter activities and total content of Fe phases in soils of the Province of Buenos Aires, Argentina. Journal of Environmental Radioactivity, 162, 113–117. https://doi.org/10.1016/j.jenvrad.2016.05.016

    Article  CAS  Google Scholar 

  • Peng, Z.-R., Wang, D., Wang, Z., Gao, Ya., & Sijia, Lu. (2015). A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: A case in Hangzhou, China. Atmospheric Environment, 123, 357–369. https://doi.org/10.1016/j.atmosenv.2015.10.074

    Article  CAS  Google Scholar 

  • Qu, H., Xiujun, Lu., Liu, L., & Ye, Y. (2019). Effects of traffic and urban parks on PM10 and PM2.5 mass concentrations. Energy Sources Part a-Recovery Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2019.1672833

    Article  Google Scholar 

  • Ramanathan, V., Ramana, M. V., Roberts, G., Kim Dohyeong, C., Corrigan, C. C., & Winker, D. (2007). Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448(7153), 575–578. https://doi.org/10.1038/nature06019

    Article  CAS  Google Scholar 

  • Ren, Z., Wan, B., Fuqiang, Su., Gao, Q., Zhang, Z., Hong, Z., Fei, Hu., & Cheng, S. (2004). Several characteristics of atmospheric environmental quality in China at present. Research of Environmental Sciences, 17(1), 1–6.

    CAS  Google Scholar 

  • Sareen, N., Waxman, E. M., Turpin, B. J., Volkamer, R., & Carlton, A. G. (2017). Potential of aerosol liquid water to facilitate organic aerosol formation: Assessing knowledge gaps about precursors and partitioning. Environmental Science and Technology, 51(6), 3327–3335. https://doi.org/10.1021/acs.est.6b04540

    Article  CAS  Google Scholar 

  •  Shaanxi Environmental Protection Bureau. (2017). http://sthjt.shaanxi.gov.cn/

  • Sheng, Q., Zhang, Y., Zhu, Z., Li, W., Jingyuan, Xu., & Tan, R. (2019). An experimental study to quantify road greenbelts and their association with PM2.5 concentration along city main roads in Nanjing, China. Science of the Total Environment, 667, 710–717. https://doi.org/10.1016/j.scitotenv.2019.02.306

    Article  CAS  Google Scholar 

  • Sun, Y., Song, T., Tang, G. Q., & Wang, Y. S. (2013). The vertical distribution of PM2.5 and boundary-layer structure during summer haze in Beijing. Atmospheric Environment, 74, 413–421. https://doi.org/10.1016/j.atmosenv.2013.03.011

    Article  CAS  Google Scholar 

  • Wang, B., Niu, H., Liu, B., Xinxin, Hu., & Ren, Z. (2018c). The indoor-outdoor characteristics of water-soluble ion in PM2.5 in Tianjin wintertime. Environmental Science and Pollution Research, 25(21), 20985–20998. https://doi.org/10.1007/s11356-018-2245-2

    Article  CAS  Google Scholar 

  • Wang, H., Li, Z., Lv, Y., Hua, Xu., Li, K., Li, D., Hou, W., Zheng, F., Wei, Y., & Ge, B. (2019a). Observational study of aerosol-induced impact on planetary boundary layer based on lidar and sunphotometer in Beijing. Environmental Pollution, 252, 897–906. https://doi.org/10.1016/j.envpol.2019.05.070

    Article  CAS  Google Scholar 

  • Wang, J., & Ogawa, S. (2015). Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. International Journal of Environmental Research and Public Health, 12(8), 9089–9101. https://doi.org/10.3390/ijerph120809089

    Article  CAS  Google Scholar 

  • Wang, J., Zhang, H., Gui, H., Rao, X., & Zhang, B. (2019b). Relationship between atmospheric visibility and PM_(2.5) concentrations and distributions. Environmental Science, 40(7), 2985–2993.

    Google Scholar 

  • Wang, J., Cao, J., Dong, Z., Guinot, B., Gao, M., Huang, R., Yongming Han, Yu., Huang, S. S., Ho, H., & Shen, Z. (2017). Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi’an, China: The effects of suburban scattered emissions in winter. Environmental Pollution, 231, 1330–1343. https://doi.org/10.1016/j.envpol.2017.08.106

    Article  CAS  Google Scholar 

  • Wang, L. L., Li, W. J., Sun, Y., Tao, M. H., Xin, J. Y., Song, T., Li, X. R., Zhang, N., Ying, K., & Wang, Y. S. (2018a). "PM2.5 Characteristics and Regional Transport Contribution in Five Cities in Southern North China Plain, During 2013–2015." Atmosphere 9 (4). https://doi.org/10.3390/atmos9040157xs

  • Wang, L., Liu, M., Tao, W., Zhang, W., Wang, Li., Shi, X., Xinwei, Lu., & Li, X. (2018b). Pollution characteristics and health risk assessment of phthalate esters in urban soil in the typical semi-arid city of Xi’an, Northwest China. Chemosphere, 191, 467–476. https://doi.org/10.1016/j.chemosphere.2017.10.066

    Article  CAS  Google Scholar 

  • Wang, Yu., Zhang, H., Zhai, J., Yanan, Wu., Cong, L., Yan, G., & Zhang, Z. (2020). Seasonal variations and chemical characteristics of PM2.5 aerosol in the urban green belt of Beijing, China. Polish Journal of Environmental Studies, 29(1), 361–370. https://doi.org/10.15244/pjoes/104358

    Article  CAS  Google Scholar 

  • Wu, Y., Wang, X., Yan, P., Zhang, L., Tao, J., Liu, X., Tian, P., Han, Z., & Zhang, R. (2017). Investigation of hygroscopic growth effect on aerosol scattering coefficient at a rural site in the southern North China Plain. Science of The Total Environment, 599–600, 76–84. https://doi.org/10.1016/j.scitotenv.2017.04.194

    Article  CAS  Google Scholar 

  • Xiang, J., Weschler, C. J., Wang, Q., Zhang, L., Mo, J., Ma, R., Zhang, J., & Zhang, Y. (2019). Reducing indoor levels of “outdoor PM2.5” in urban China: impact on mortalities. Environmental Science & Technology, 53(6), 3119–3127. https://doi.org/10.1021/acs.est.8b06878

    Article  CAS  Google Scholar 

  • Yang, C., Li, H., Guanghong, Xu., Xiang, X., & Yang, D. (2019a). A measure to the building density and floor area ratio of rural settlements based on Da Jiang unmanned aerial vehicle remote sensing. Mountain Research, 37(1), 144–150.

    Google Scholar 

  • Yang, X., Qizhong, Wu., Zhao, R., Cheng, H., He, H., Ma, Q., Wang, L., & Luo, H. (2019b). New method for evaluating winter air quality: PM2.5 assessment using Community Multi-Scale Air Quality Modeling (CMAQ) in Xi’an. Atmospheric Environment, 211, 18–28. https://doi.org/10.1016/j.atmosenv.2019.04.019

    Article  CAS  Google Scholar 

  • Yuan, R., Zhang, X., Hao Liu, Yu., Gui, B. S., Tao, X., Wang, Y., Zhong, J., Li, Y., & Gao, Z. (2019). Aerosol vertical mass flux measurements during heavy aerosol pollution episodes at a rural site and an urban site in the Beijing area of the North China Plain. Atmospheric Chemistry and Physics, 19(20), 12857–12874. https://doi.org/10.5194/acp-19-12857-2019

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, S., Guo, Y., Zhang, R., Qin, X., Huang, K., Wang, D., Qingyan, Fu., Wang, J., & Zhou, B. (2018a). Aerosol vertical profile retrieved from ground-based MAX-DOAS observation and characteristic distribution during wintertime in Shanghai, China. Atmospheric Environment, 192, 193–205. https://doi.org/10.1016/j.atmosenv.2018.08.051

    Article  CAS  Google Scholar 

  • Zhang, J., Ji, Y., Zhao, J., & Zhao, J. (2017). Optimal location of a particulate matter sampling head outside an unmanned aerial vehicle. Particuology, 32, 153–159. https://doi.org/10.1016/j.partic.2016.09.012

    Article  CAS  Google Scholar 

  • Zhang, R., Sun, X., Shi, A., Huang, Y., Yan, J., Nie, T., Yan, X., & Li, X. (2018b). Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmospheric Environment, 177, 275–282. https://doi.org/10.1016/j.atmosenv.2017.12.031

    Article  CAS  Google Scholar 

  • Zhang, Y. (2019). Dynamic effect analysis of meteorological conditions on air pollution: A case study from Beijing. Science of the Total Environment, 684, 178–185. https://doi.org/10.1016/j.scitotenv.2019.05.360

    Article  CAS  Google Scholar 

  • Zhao, P., Du, X., Su, J., Ding, J., & Dong, Q. (2020). Aerosol hygroscopicity based on size-resolved chemical compositions in Beijing. Science of the Total Environment, 716, 137074. https://doi.org/10.1016/j.scitotenv.2020.137074

    Article  CAS  Google Scholar 

  • Zhao, P., D. J., Du, X, & Su, J. (2019). High time-resolution measurement of light scattering hygroscopic growth factor in Beijing: A novel method for high relative humidity conditions Atmospheric Environment 215 https://doi.org/10.1016/j.atmosenv.2019.116912

  • Zhou, Y. K., Zhu, B., Han, Z. W., Pan, C., Guo, T., Wei, J. S., & Liu, D. Y. (2016). Analysis of visibility characteristics and connecting factors over the Yangtze River Delta Region during winter time. China Environmental Science, 36(3), 660–669.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the staff of the Shaanxi Environmental Monitoring Center for their assistance in instrument calibration.

Funding

This research work was funded by the Resilient urban and rural system planning theory and practice construction system adapting to climate change (2020TD-029), Natural Science Foundation of Shaanxi Province (2019JM-475), and the Fundamental Research Funds for the Central Universities (CHD300102411301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyuan Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, K., Zhao, J., Ma, X. et al. Effect of urban underlying surface on PM2.5 vertical distribution based on UAV in Xi’an, China. Environ Monit Assess 193, 312 (2021). https://doi.org/10.1007/s10661-021-09044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09044-8

Keywords

Navigation