Skip to main content

Advertisement

Log in

Determination of spatiotemporal changes in Erzurum plain wetland system using remote sensing techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study takes place in Erzurum city of Eastern Anatolia Region of Turkey Erzurum Plain Wetland, one of the wetlands of international importance that has biodiversity and countless benefits to its environment. Studies to offer opportunities to monitor long-term changes in the area by using advanced technology economically and effectively are expected to guide decision makers. In the present study, the changes in surface area of Erzurum Plain Wetland were investigated between 1998 and 2017 by using remote sensing techniques. As a result of the change analysis conducted using Landsat 5 TM, Landsat 7 ETM, and Landsat 8 OLI satellite data, it has been determined there is an expansion in deep and shallow water areas of the wetland. According to the results of the study, deep water areas expanded by 118.64% in 28 years. During this period, the total of deep water and shallow water reed areas increased by 9.08%. In the period of 1989–2017, the total area of the Erzurum Plain Wetland consisting of deep water, shallow water/reeds, and wet meadow/soil parts grew by 26.88%. In the study, the effects of change and human activities on this surface area change were also examined and it was found as a result of the evaluation that more than climatic factors, change of hydrological structure caused by increase in underground water reserves may be effective on the expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Aazami, M., & Shanazi, K. (2020). Tourism wetlands and rural sustainable livelihood: The case from Iran. Journal of Outdoor Recreation and Tourism, 30, 100284. https://doi.org/10.1016/j.jort.2020.1002844

    Article  Google Scholar 

  • Abburu, S., & Golla, S. B. (2015). Satellite image classification methods and techniques: A review. International Journal of Computer Applications, 119(8), 20–25. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.695.1415&rep=rep1&type=pdf

  • Aher, S., Shinde, S. D., Jarag, A. P., Babu, M., & Gawali, P. B. (2014). Identification of lineaments in the Pravara Basin from ASTER-DEM data and satellite images for their geotectonic implication. International Research Journal of Earth Sciences, 2(7), 1–10.

    Google Scholar 

  • Bridgewater, P., & Kim, R. E. (2021). The Ramsar convention on wetlands at 50. Nature Ecology & Evolution. Advance online publication. https://doi.org/10.1038/s41559-021-01392-5

    Article  Google Scholar 

  • Cai, Y., Zhang, H., Pan, W., et al. (2012). Urban expansion and its influencing factors in Natural Wetland Distribution Area in Fuzhou City. China. Chin. Geogr. Sci., 22, 568–577. https://doi.org/10.1007/s11769-012-0564-7

    Article  Google Scholar 

  • Cho, E., Choi, M., & Wagner, W. (2015). An assessment of remotely sensed surface and root zone soil moisture through active and passive sensors in northeast Asia. Remote Sensing of Environment, 60, 166–179. https://doi.org/10.1016/j.rse.2015.01.013

    Article  Google Scholar 

  • Dwyer, J. L., Roy, D. P., Sauer, B., Jenkerson, C. B., Zhang, H. K., & Lymburner, L. (2018). Analysis ready data: Enabling analysis of the Landsat archive. Remote Sensing, 10(9), 1363. https://doi.org/10.3390/rs10091363

    Article  Google Scholar 

  • De Jong, S. M., Meer, F. D., & Clevers, J. G. (2004). Basics of remote sensing. In: Jong S.M.D., Meer F.D.V. (eds) Remote sensing image analysis: Including the spatial domain. remote sensing and digital image processing, 5

  • Duarte, D. C., De, O., Zanetti, J., Gripp J. J., & Medeiros, N. D. G. (2018). Comparison of supervised classification methods of maximum likelihood, minimum distance, parallelepiped and neural network in images of unmanned air vehicle (UAV) in Viçosa - MG. Revista Brasileira de Cartografia, 70(2), 437–452. https://doi.org/10.14393/rbcv70n2-45377

  • Elfadaly, A., Lasaponara, R., Murgante, B., & Qelichi, M.M. (2017). Cultural heritage management using analysis of satellite images and advanced GIS techniques at East Luxor, Egypt and Kangavar, Iran (A Comparison Case Study). In: Gervasi O. et al. (eds) Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science, 10407. https://doi.org/10.1007/978-3-319-62401-3_12

  • El Rahman, S. A. (2015). Hyperspectral imaging classification using ISODATA algorithm: Big data challenge. Fifth International Conference on e-Learning, 2015, 247–250. https://doi.org/10.1109/ECONF.2015.39

    Article  Google Scholar 

  • Foody, G. M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 239, 111630. https://doi.org/10.1016/j.rse.2019.111630

    Article  Google Scholar 

  • Gelagay, H. S., & Minale, A. S. (2016). Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4(2), 126–136. https://doi.org/10.1016/j.iswcr.2016.01.002

    Article  Google Scholar 

  • Guo, M., Li, J., Sheng, C., Xu, J., & Wu, L. (2017). A review of wetland remote sensing. Sensors (Basel), 17(4), 1–36. https://doi.org/10.3390/s17040777

    Article  CAS  Google Scholar 

  • Homolova, L., Malenovsky, Z., Clevers, J., Garcia-Santos, G., & Schaepmana, M. E. (2013). Review of optical-based remote sensing for plant trait mapping. Ecological Complexity, 15, 1–16. https://doi.org/10.1016/j.ecocom.2013.06.003

    Article  Google Scholar 

  • Jacintha, T. G. A., Rajasree, S. R. R., Kumar, J. D., & Sriganesh, J. (2019). Assessment of wetland change dynamics of Chennai coast, Tamil Nadu, India, using satellite remote sensing. Indian Journal of Geo Marine Sciences, 48(8), 1258–1266

    Google Scholar 

  • Lemenkova, P. (2013). Monitoring changes in agricultural landscapes of Central Europe, Hungary: Application of ILWIS GIS for image processing. European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20142479

    Article  Google Scholar 

  • Liau, K., Xu, S., Wu, J., & Zhu, Q. (2013). Spatial estimation of surface soil texture using remote sensing data. Soil Science and Plant Nutrition, 59(4), 488–500. https://doi.org/10.1080/00380768.2013.802643

    Article  Google Scholar 

  • Moreno-Mateos, D., Power, M. E., Comin, F. A., & Yockteng, R. (2012). Structural and functional loss in restored wetland ecosystems. Plos Biology, 10(1), 1–8. https://doi.org/10.1371/journal.pbio.1001247

    Article  CAS  Google Scholar 

  • Niu, Z., Zhang, H., Wang, X., et al. (2012). Mapping wetland changes in China between 1978 and 2008. Chinese Science Bulletin, 57, 2813–2823. https://doi.org/10.1007/s11434-012-5093-3

    Article  Google Scholar 

  • Pan, P., Xi, X., & Wang, C. (2019). A MATLAB-based digital elevation model (DEM) data processing toolbox (MDEM). Environmental Modelling & Software, 122, 104566. https://doi.org/10.1016/j.envsoft.2019.104566

    Article  Google Scholar 

  • Redy, G. P. O. (2018). Satellite remote sensing sensors: Principles and applications, geospatial technologies in land resources mapping. Monitoring and Management, 21, 21–43. https://doi.org/10.1007/978-3-319-78711-4_2

    Article  Google Scholar 

  • Wang, J., Qi, J., Zhang D. & Fu, Z. (2018). Sensitivity analysis about FLAASH model parameters. 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi'an, 1–5. https://doi.org/10.1109/EORSA.2018.8598564

  • Wu, H., Zeng, G., Liang, J., Chen, J., Xu, J., Dai, J., Sang, L., Li, X., & Ye, S. (2017). Responses of landscape pattern of China’s two largest freshwater lakes to early dry season after the impoundment of Three-Gorges Dam. International Journal of Applied Earth Observation and Geoinformation, 56, 36–43. https://doi.org/10.1016/j.jag.2016.11.006

    Article  Google Scholar 

  • Wu, H., Chen, J., Zeng, G., Xu, J., Sang, L., Liu, Q., Dai, J., Xiong, W., Yuan, Z., Wang, Y., & Ye, S. (2019a). Effects of Early dry season on habitat suitability for migratory birds in China’s two largest freshwater lake wetlands after the impoundment of Three Gorges Dam. Journal Of Envıronmental Informatıcs, 36(2), 82–92

    Google Scholar 

  • Wu, H., Chen, J., Xu, J., Zeng, G., Sang, L., Liu, Q., Yin, Z., Dai, J., Yin, D., Liang, J., & Ye, S. (2019b). Effects of dam construction on biodiversity: A review. Journal of Cleaner Production, 221, 480–489. https://doi.org/10.1016/j.jclepro.2019.03.001

    Article  Google Scholar 

  • Wu, H., Hu, X., Sun, S., Dai, J., Ye, S., Du, C., Chen, H., Yu, G., Zhou, L., & Chen, J. (2020). Effect of increasing of water level during the middle of dry season on landscape pattern of the two largest freshwater lakes of China. Ecological Indicators, 113, 106283. https://doi.org/10.1016/j.ecolind.2020.106283

    Article  Google Scholar 

  • Wu, H., Dai, J., Sun, S., Du, C., Long, Y., Chen, H., Yu, G., Ye, S., & Chen, J. (2021). Responses of habitat suitability for migratory birds to increased water level during middle of dry season in the two largest freshwater lake wetlands of China. Ecological Indicators, 121, 107065. https://doi.org/10.1016/j.ecolind.2020.107065

    Article  Google Scholar 

  • Yan, W., Shaker, A., Habib, A., & Kersting, A. P. (2012). Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 35–44. https://doi.org/10.1016/j.isprsjprs.2011.10.005

    Article  Google Scholar 

  • Yıldız, N. D., Yılmaz, S., & Demir, M. (2010). Determination of the Change in Wetland Boundary with GIS-UA; Erzurum Example (in Turkish). Annual Journal of Rural Environment, 23–33

  • Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence, R., & Evangelista, P. H. (2017). A survival guide to landsatpreprocessing. Concepts & Synthesis, 98, 1–13. https://doi.org/10.1002/ecy.1730

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şahset İrdemez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İrdemez, Ş., Eymirli, E.B. Determination of spatiotemporal changes in Erzurum plain wetland system using remote sensing techniques. Environ Monit Assess 193, 265 (2021). https://doi.org/10.1007/s10661-021-09041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09041-x

Keywords

Navigation