Skip to main content
Log in

Optimal implementation of low impact development for urban stormwater quantity and quality control using multi-objective optimization

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Stormwater runoff is a major concern in urban areas which is mostly the result of vast urbanization. To reduce urban stormwater runoff and improve water quality, low impact development (LID) is used in urban areas. Therefore, it is vital to find the optimal combination of LID controls to achieve maximum reduction in both stormwater runoff and pollutants with optimal cost. In this study, a simulation–optimization model was developed by linking the EPA Storm Water Management Model (SWMM) to the Multi-Objective Particle Swarm Optimization (MOPSO) using MATLAB. The coupled model could carry out multi-objective optimization (MOO) and find potential solutions to the optimization objectives using the SWMM simulation model outputs. The SWMM model was developed using data from the BUNUS catchment in Kuala Lumpur, Malaysia. The total suspended solids (TSS) and total nitrogen (TN) were selected as pollutants to be used in the simulation model. Vegetated swale and rain garden were selected as LID controls for the study area. The LID controls were assigned to the model using the catchment characteristics. The target objectives were to minimize peak stormwater runoff, TSS, and TN with the minimum number of LID controls applications. The LID combination scenarios were also tested in SWMM to identify the best LID types and combination to achieve maximum reduction in both peak runoff and pollutants. This study found that the peak runoff, TSS, and TN were reduced by 13%, 38%, and 24%, respectively. The optimal number of LID controls that could be used at the BUNUS catchment area was also found to be 25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahiablame, L., & Shakya, R. (2016). Modeling flood reduction effects of low impact development at a watershed scale. Journal of Environmental Management, 171, 81–91.

    Article  Google Scholar 

  • Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of low impact development practices: Literature review and suggestions for future research. Water, Air, & Soil Pollution, 223(7), 4253–4273.

    Article  CAS  Google Scholar 

  • Autixier, L., Mailhot, A., Bolduc, S., Madoux-Humery, A. S., Galarneau, M., Prévost, M., et al. (2014). Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Science of the Total Environment, 499, 238–247.

    Article  CAS  Google Scholar 

  • Azari, B., & Tabesh, M. (2018). Optimal design of stormwater collection networks considering hydraulic performance and BMPs. International Journal of Environmental Research, 12(5), 585–596.

    Article  Google Scholar 

  • Baek, S. S., Choi, D. H., Jung, J. W., Lee, H. J., Lee, H., Yoon, K. S., et al. (2015). Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: experimental and modeling approach. Water Research, 86, 122–131.

    Article  CAS  Google Scholar 

  • Bakhshipour, A. E., Dittmer, U., Haghighi, A., & Nowak, W. (2019). Hybrid green-blue-gray decentralized urban drainage systems design, a simulation-optimization framework. Journal of Environmental Management, 249, 109364.

    Article  Google Scholar 

  • Barbosa, A., Fernandes, J., & David, L. (2012). Key issues for sustainable urban stormwater management. Water Research, 46(20), 6787–6798.

    Article  CAS  Google Scholar 

  • Bell, C. D., McMillan, S. K., Clinton, S. M., & Jefferson, A. J. (2016). Hydrologic response to stormwater control measures in urban watersheds. Journal of Hydrology, 541, 1488–1500.

    Article  Google Scholar 

  • Chen, J., Liu, Y., Gitau, M. W., Engel, B. A., Flanagan, D. C., & Harbor, J. M. (2019). Evaluation of the effectiveness of green infrastructure on hydrology and water quality in a combined sewer overflow community. Science of the Total Environment, 665, 69–79.

    Article  CAS  Google Scholar 

  • Chen, J., Theller, L., Gitau, M. W., Engel, B. A., & Harbor, J. M. (2017). Urbanization impacts on surface runoff of the contiguous United States. Journal of Environmental Management, 100(187), 470–481.

    Article  Google Scholar 

  • Chen, Y., Samuelson, H. W., & Tong, Z. (2016). Integrated design workflow and a new tool for urban rainwater management. Journal of Environmental Management, 180, 45–51.

    Article  Google Scholar 

  • Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on evolutionary computation, 8(3), 256–279.

    Article  Google Scholar 

  • Damodaram, C., Giacomoni, M. H., Prakash Khedun, C., Holmes, H., Ryan, A., Saour, W., et al. (2010). Simulation of combined best management practices and low impact development for sustainable stormwater management. Journal of the American Water Resources Association, 46(5), 907–918.

    Article  Google Scholar 

  • Dietz, M. E. (2007). Low impact development practices: A review of current research and recommendations for future directions. Water, Air, and Soil Pollution, 186(1–4), 351–363.

    Article  CAS  Google Scholar 

  • Dong, F., Zhang, Z., Liu, C., Zou, R., Liu, Y., & Guo, H. (2020). Towards efficient Low Impact Development: A multi-scale simulation-optimization approach for nutrient removal at the urban watershed. Journal of cleaner production, 122295.

  • Duan, H. F., & Gao, X. (2019). Flooding control and hydro-energy assessment for urban Stormwater drainage systems under climate change: Framework development and case study. Water Resources Management, 33(10), 3523–3545.

    Article  Google Scholar 

  • Duan, H. F., Li, F., & Tao, T. (2016a). Multi-objective optimal design of detention tanks in the urban stormwater drainage system: Uncertainty and sensitivity analysis. Water Resources Management, 30(7), 2213–2226.

    Article  Google Scholar 

  • Duan, H. F., Li, F., & Yan, H. (2016b). Multi-objective optimal design of detention tanks in the urban stormwater drainage system: LID implementation and analysis. Water Resources Management, 30(13), 4635–4648.

    Article  Google Scholar 

  • Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995 (pp. 39–43): IEEE.

  • Eckart, K., McPhee, Z., & Bolisetti, T. (2017). Performance and implementation of low impact development—A review. Science of the Total Environment, 607, 413–432.

    Article  Google Scholar 

  • Eckart, K., McPhee, Z., & Bolisetti, T. (2018). Multiobjective optimization of low impact development stormwater controls. Journal of Hydrology, 562, 564–576.

    Article  Google Scholar 

  • Elliott, A., & Trowsdale, S. A. (2007). A review of models for low impact urban stormwater drainage. Environmental Modelling & Software, 22(3), 394–405.

    Article  Google Scholar 

  • Fieldsend, J. E., Everson, R. M., & Singh, S. (2003). Using unconstrained elite archives for multi-objective optimisation. EEE Transactions on evolutionary computation, 7(3), 305–323.

    Article  Google Scholar 

  • Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., et al. (2015). SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525–542.

    Article  Google Scholar 

  • Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., et al. (2003). The nitrogen cascade. AIBS Bulletin, 53(4), 341–356.

    Google Scholar 

  • Geza, M., Ma, G., Kim, H., Cath, T. Y., & Xu, P. (2018). iDST: An integrated decision support tool for treatment and beneficial use of non-traditional water supplies—Part I. Methodology. Journal of Water Process Engineering, 25, 236–246.

    Article  Google Scholar 

  • Hood, M. J., Clausen, J. C., & Warner, G. S. (2007). Comparison of stormwater lag times for low impact and traditional residential development. Journal of the American Water Resources Association, 43(4), 1036–1046.

    Article  Google Scholar 

  • Hosseini, S. S., Hamidi, S. A., Mansuri, M., & Ghoddosian, A. (2015). Multi objective particle swarm optimization (MOPSO) for size and shape optimization of 2D truss structures. Periodica Polytechnica Civil Engineering, 59(1), 9–14.

    Article  Google Scholar 

  • Hou, J., Zhu, M., Wang, Y., & Sun, S. (2020). Optimal spatial priority scheme of urban LID-BMPs under different investment periods. Landscape and Urban Planning, 202, 103858.

    Article  Google Scholar 

  • Huber, W. C., Dickinson, R. E., Barnwell Jr, T. O., & Branch, A. (1988). Storm water management model; version 4: United States Environmental Protection Agency.

  • Hunt, W., Smith, J., Jadlocki, S., Hathaway, J., & Eubanks, P. (2008). Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte. NC. Journal of Environmental Engineering, 134(5), 403–408.

    Article  CAS  Google Scholar 

  • Hunt, W. F., Traver, R. G., Davis, A. P., Emerson, C. H., Collins, K. A., & Stagge, J. H. (2010). Low impact development practices: Designing to infiltrate in urban environments. In N.-B. Chang (Ed.), Effects of urbanization on groundwater. (pp. 308–343). ASCE.

    Chapter  Google Scholar 

  • Jackisch, N., & Weiler, M. (2017). The hydrologic outcome of a low impact development (LID) site including superposition with streamflow peaks. Urban Water Journal, 14(2), 143–159.

    Article  Google Scholar 

  • Jia, H., Lu, Y., Shaw, L. Y., & Chen, Y. (2012). Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village. Separation and Purification Technology, 84, 112–119.

    Article  CAS  Google Scholar 

  • Jia, H., Wang, X., Ti, C., Zhai, Y., Field, R., Tafuri, A. N., et al. (2015). Field monitoring of a LID-BMP treatment train system in China. Environmental Monitoring and Assessment, 187(6), 373.

    Article  Google Scholar 

  • Jung, Y. W., Han, S. I., & Jo, D. (2016). Optimal design of permeable pavement using harmony search algorithm with SWMM. In Harmony Search Algorithm (pp. 385–394): Springer.

  • Kalyanmoy, D. (2001). Multi objective optimization using evolutionary algorithms: John Wiley and Sons.

  • Kong, F. H., Ban, Y. L., Yin, H. W., James, P., & Dronova, I. (2017). Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environmental Modelling & Software, 95, 132–142.

    Article  Google Scholar 

  • Latifi, M., Rakhshandehroo, G., Nikoo, M. R., & Sadegh, M. (2019). A game theoretical low impact development optimization model for urban storm water management. Journal of cleaner production, 241, 118323.

    Article  Google Scholar 

  • Leitão, J., Carbajal, J., Rieckermann, J., Simões, N., Marques, A. S., & de Sousa, L. (2018). Identifying the best locations to install flow control devices in sewer networks to enable in-sewer storage. Journal of Hydrology, 556, 371–383.

    Article  Google Scholar 

  • Li, F., Duan, H.-F., Yan, H., & Tao, T. (2015). Multi-objective optimal design of detention tanks in the urban stormwater drainage system: Framework development and case study. Water Resources Management, 29(7), 2125–2137.

    Article  Google Scholar 

  • Li, F., Yan, X. F., & Duan, H. F. (2019a). Sustainable design of urban stormwater drainage systems by implementing detention tank and LID measures for flooding risk control and water quality management. Water Resources Management, 33(9), 3271–3288.

    Article  Google Scholar 

  • Li, Q., Wang, F., Yu, Y., Huang, Z., Li, M., & Guan, Y. (2019b). Comprehensive performance evaluation of LID practices for the sponge city construction: A case study in Guangxi, China. Journal of Environmental Management, 231, 10–20.

    Article  Google Scholar 

  • Liu, Y. (2009). Automatic calibration of a rainfall–runoff model using a fast and elitist multi-objective particle swarm algorithm. Expert Systems with Applications, 36(5), 9533–9538.

    Article  Google Scholar 

  • Liu, Y., Bralts, V. F., & Engel, B. A. (2015). Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. Science of the Total Environment, 511, 298–308.

    Article  CAS  Google Scholar 

  • Liu, Y., Cibin, R., Bralts, V. F., Chaubey, I., Bowling, L. C., & Engel, B. A. (2016). Optimal selection and placement of BMPs and LID practices with a rainfall-runoff model. Environmental Modelling & Software, 80, 281–296.

    Article  Google Scholar 

  • Long, H., Liu, Y., Hou, X., Li, T., & Li, Y. (2014). Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat International, 44, 536–544.

    Article  Google Scholar 

  • Loperfido, J. V., Noe, G. B., Jarnagin, S. T., & Hogan, D. M. (2014). Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale. Journal of Hydrology, 519, 2584–2595.

    Article  Google Scholar 

  • Macro, K., Matott, L. S., Rabideau, A., Ghodsi, S. H., & Zhu, Z. (2019). OSTRICH-SWMM: A new multi-objective optimization tool for green infrastructure planning with SWMM. Environmental Modelling & Software, 113, 42–47.

    Article  Google Scholar 

  • Maniquiz-Redillas, M. C., & Kim, L. H. (2016). Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environmental Technology, 37(18), 2265–2272.

    Article  CAS  Google Scholar 

  • Marques, G. F., de Souza, V. B., & Moraes, N. V. (2017). The economic value of the flow regulation environmental service in a Brazilian urban watershed. Journal of Hydrology, 554, 406–419.

    Article  Google Scholar 

  • Martin-Mikle, C. J., de Beurs, K. M., Julian, J. P., & Mayer, P. M. (2015). Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landscape and Urban Planning, 140, 29–41.

    Article  Google Scholar 

  • Martin, C., Ruperd, Y., & Legret, M. (2007). Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices. European Journal of Operational Research, 181(1), 338–349.

    Article  Google Scholar 

  • Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7–8), 1219–1227.

    Article  Google Scholar 

  • MSMA. (2012). Urban stormwater management manual for Malaysia (MSMA. (2nd ed.). Department of Irrigation and Drainage.

    Google Scholar 

  • Palla, A., & Gnecco, I. (2015). Hydrologic modeling of low impact development systems at the urban catchment scale. Journal of Hydrology, 528, 361–368.

    Article  Google Scholar 

  • Park, J., Kim, J. H., Dvorak, B., & Lee, D. K. (2018). The role of green roofs on microclimate mitigation effect to local climates in summer. International Journal of Environmental Research, 12(5), 671–679.

    Article  Google Scholar 

  • Qin, H. P., Li, Z. X., & Fu, G. (2013). The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 129, 577–585.

    Article  Google Scholar 

  • Reyes-Sierra, M., & Coello, C. A. C. ( 2005). A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization. In The 2005 IEEE Congress on Evolutionary Computation, 2005 (Vol. 1, pp. 65–72): IEEE.

  • Rezaei, A. R., Ismail, Z., Niksokhan, M. H., Dayarian, M. A., Ramli, A. H., & Shirazi, S. M. (2019). A quantity-quality model to assess the effects of source control stormwater management on hydrology and water quality at the catchment scale. Water, 11(7), 1415.

    Article  Google Scholar 

  • Rossman, L. (2004). SWMM (stormwater management model), version 5, user manual. . USEPA.

    Google Scholar 

  • Rossman, L. A. (2010). Storm water management model user's manual, version 5.0: National Risk Management Research Laboratory, Office of Research and Development.

  • Sebti, A., Carvallo Aceves, M., Bennis, S., & Fuamba, M. (2016). Improving nonlinear optimization algorithms for BMP implementation in a combined sewer system. Journal of Water Resources Planning and Management, 142(9), 04016030.

    Article  Google Scholar 

  • Seitzinger, S. P., Sanders, R., & Styles, R. (2002). Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnology and Oceanography, 47(2), 353–366.

    Article  CAS  Google Scholar 

  • Shojaeizadeh, A., Geza, M., & Hogue, T. S. (2020). GIP-SWMM: A new green infrastructure placement tool coupled with SWMM. Journal of Environmental Management, 277, 111409.

    Article  Google Scholar 

  • Song, J. Y., & Chung, E. S. (2017). A multi-criteria decision analysis system for prioritizing sites and types of low impact development practices: Case of Korea. Water, 9(4), 291.

    Article  Google Scholar 

  • Sun, N. (2012). Development of a stormwater model for testing the hydrological effectiveness of green infrastructure implementation scenarios in urban sewersheds: State University of New York, College of Environmental Science and Forestry.

  • Wang, M., Sun, Y., & Sweetapple, C. (2017). Optimization of storage tank locations in an urban stormwater drainage system using a two-stage approach. Journal of Environmental Management, 204, 31–38.

    Article  CAS  Google Scholar 

  • Water, M. (2005). WSUD engineering procedures: Stormwater: Stormwater. . CSIRO PUBLISHING.

    Book  Google Scholar 

  • Yang, J. J., Zhou, J. Z., Wu, W., & Liu, F. . (2005). Application of improved particle swarm optimization in economic dispatching. Power System Technology, 2, 29.

    Google Scholar 

  • Yang, J., Zhou, J., Liu, L., & Li, Y. (2009). A novel strategy of pareto-optimal solution searching in multi-objective particle swarm optimization (MOPSO). Computers & Mathematics with Applications, 57(11–12), 1995–2000.

    Article  Google Scholar 

  • Yang, L., Tian, F., & Niyogi, D. (2015). A need to revisit hydrologic responses to urbanization by incorporating the feedback on spatial rainfall patterns. Urban Climate, 12, 128–140.

    Article  Google Scholar 

  • Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1998). Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204(1–4), 83–97.

    Article  Google Scholar 

  • You, L., Xu, T., Mao, X., & Jia, H. (2019). Site-scale LID-BMPs planning and optimization in residential areas. Journal of Sustainable Water in the Built Environment, 5(1), 05018004.

    Article  Google Scholar 

  • Zhang, G. (2009). Development of a multi-objective optimization framework for implementing low impact development scenarios in an urbanizing watershed. Doctoral thesis, The Pennsylvania State University.

  • Zhang, J., Wang, G., He, R., & Liu, C. (2009). Variation trends of runoffs in the Middle Yellow River basin and its response to climate change. Advances in Water Science, 20(2), 153–158.

    CAS  Google Scholar 

  • Zhang, K., & Chui, T. F. M. (2018). A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Science of the Total Environment, 621, 915–929.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Irrigation and Drainage (DID) and the SMART control center here in Kuala Lumpur to provide the study with the required data. The current research was supported by the grant number, RP013A-15SUS of the University of Malaya. The ArcGIS and MATLAB computations were performed in the Computer Laboratory, Block J, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdul Razaq Rezaei or Zubaidah Ismail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, A.R., Ismail, Z., Niksokhan, M.H. et al. Optimal implementation of low impact development for urban stormwater quantity and quality control using multi-objective optimization. Environ Monit Assess 193, 241 (2021). https://doi.org/10.1007/s10661-021-09010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09010-4

Keywords

Navigation