Skip to main content

Advertisement

Log in

Comparative biomarker responses to urban pollution in three polychaete species: Perinereis cultrifera, Diopatra neapolitana, and Marphysa sanguinea from the lagoon of Tunis

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Coastal lagoons are among the most vulnerable ecosystems as they are often exposed to different anthropogenic activities. The Polychaetes, which are dominant components in macrobenthic community, are particularly exposed to contamination. The current study was designed to assess and compare the sensitivity of different polychaetes species towards urban pollution. To do this, three polychaete species: Perinereis cultrifera, Diopatra neapolitana, and Marphysa sanguinea, were collected from the Tunis South Lagoon during summer 2013. A set of biomarkers indicative of genotoxicity (DNA damage), biotransformation, and oxidative stress (glutathione S-transferase, GST) as well as immune response (cyclooxygenase activity (COX), lysozyme activity, and nitric oxide level (NOx)), was used. The results revealed that D. neapolitana and P. cultrifera exhibited higher genetic alteration and GST activity and more prominent immune response when compared with M. sanguinea. These findings denote of the higher sensitivity of D. neapolitana and P. cultrifera to urban pollution and suggest their possible use in environmental biomonitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abidi, M., Ben Amor, R., & Gueddari, M. (2018). Assessment of the trophic status of the south lagoon of Tunis (Tunisia, Mediterranean Sea): Geochemical and statistical approaches. Journal of Chemistry, 2018, 1–17.

    Article  Google Scholar 

  • Aguirre-Martínez, G. V., André, C., Gagné, F., & Martín-Díaz, L. M. (2018). The effects of human drugs in Corbicula fluminea. Assessment of neurotoxicity, inflammation, gametogenic activity, and energy status. Ecotoxicology and Environmental Safety, 148, 652–663.

    Article  Google Scholar 

  • Akcha, F., Leday, G., & Pfohl-Leszkowicz, A. (2004). Measurement of DNA adducts and strand breaks in dab (Limanda limanda) collected in the field: Effects of biotic (sex) and abiotic (sampling site and period) factors on the extent of DNA damage. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 552(1–2), 197–207.

    Article  CAS  Google Scholar 

  • Amiard-Triquet, C., Mouneyrac, C., & Berthet, B. (2013). Polychaetes in ecotoxicology. In J. F. Férard & C. Blaise (Eds.), Encyclopedia of aquatic ecotoxicology (pp. 893–908). Dordrecht: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Auffret, M., Mujdzic, N., Corporeau, C., & Moraga, D. (2002). Xenobiotic-induced immunomodulation in the European flat oyster Ostrea edulis. Marine Environmental Research, 54(3–5), 585–589.

    Article  CAS  Google Scholar 

  • Ayed, N., Faure, E., Quignard, J. P., & Trabelsi, M. (2011). Determination of P, Ca, Zn, Cd and Pb concentrations in muscle, gills, liver, gonads and skeletons of two natural populations of Atherina Lagunae in North Tunis Lake, Tunisia. Journal of Water Resource and Protection, 3, 421–428.

    Article  CAS  Google Scholar 

  • Bach, L., Palmqvist, A., Rasmussen, L. J., & Forbes, V. E. (2005). Differences in PAH tolerance between Capitella species: Underlying biochemical mechanisms. Aquatic Toxicology, 74, 307–319.

    Article  CAS  Google Scholar 

  • Banni, M., Bouraoui, Z., Clerandeau, C., Narbonne, J. F., & Boussetta, H. (2009). Mixture toxicity assessment of cadmium and benzo[a]pyrene in the sea worm Hediste diversicolor. Chemosphere, 77(7), 902–906.

    Article  CAS  Google Scholar 

  • Bat, L. (2005). A review of sediment toxicity bioassays using the amphipods and polychaetes. (2005). Turkish Journal of Fisheries and Aquatic Sciences, 5, 119–139.

    Google Scholar 

  • Bejaoui, S., Rabeh, I., Telahigue, K., Tir, M., Chetoui, I., Fouzai, C., et al. (2021). Assessment of oxidative stress, genotoxicity and histopathological responses in the digestive gland of Ruditapes decussatus collected from northern Tunisian lagoons. Scientia Marina, 84(4), 403–420.

    Article  Google Scholar 

  • Bellante, A., Piazzese, D., Cataldo, S., Parisi, M. G., & Cammarata, M. (2016). Evaluation and comparison of trace metal accumulation in different tissues of potential bioindicator organisms: Macrobenthic filter feeders Styela plicata, Sabella spallanzanii, and Mytilus galloprovincialis. Environmental Toxicology and Chemistry, 35, 3062–3070.

    Article  CAS  Google Scholar 

  • Berlov, M. N., & Maltseva, A. L. (2016). Immunity of the lugworm Arenicola marina: Cells and molecules. Invertebrate Survival Journal, 13, 247–256.

    Google Scholar 

  • Bouraoui, Z., Ghedira, J., Capri, F., Chouba, L., & Boussetta, H. (2014). Cytochemical responses of Hediste diversicolor (Nereidae, Polychaete) sampled from polluted sites along the Tunisian coast. Revista de Gestão Costeira / Journal of Integrated Coastal Zone Management, 14(1), 119–127.

    Article  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Callewaert, L., & Michiels, C. (2010). Lysozymes in the animal kingdom. Journal of biosciences, 35, 127–160.

    Article  CAS  Google Scholar 

  • Canesi, L., Gallo, G., Gavioli, M., & Pruzzo, C. (2002). Bacteria–hemocyte interactions and phagocytosis in marine bivalves. Microscopy research and technique, 57, 469–476.

    Article  Google Scholar 

  • Chalghmi, H., Bourdineaud, J. P., Chbani, I., Haouas, Z., Bouzid, S., Er-Raioui, H., & Saidane, D. (2020). Occurrence, sources and effects of polycyclic aromatic hydrocarbons in the Tunis lagoon, Tunisia: An integrated approach using multi-level biological responses in Ruditapes decussatus. Environmental Science and Pollution, 27(4), 3661–3674.

    Article  CAS  Google Scholar 

  • Chalghmi, H., Zrafi, I., & Saidane-Mosbahi, D. (2016). Chronic effects of petroleum hydrocarbons in Tunis-navigation channel on phase I and II biotransformation enzymes in bivalve species. International Journal of Research in Chemistry and Environment, 6, 28–33.

    CAS  Google Scholar 

  • Chalghmi, H., Zrafi, I., Gourves, P. Y., Bourdineaud, J. P., & Saidane-Mosbahi, D. (2016). Combined effects of metal contamination and abiotic parameters on biomarker responses in clam Ruditapes decussatus gills: An integrated approach in biomonitoring of Tunis lagoon. Environmental Science: Processes & Impacts, 18, 895–907.

    CAS  Google Scholar 

  • Chouba, L., Chebil, L. A., & Herrey, S. (2010). Etude saisonnière de la contamination métallique des macroalgues de la lagune nord de Tunis. Bulletin de l’Institut National des Sciences et Technologie de la Mer, 37, 123–131.

    Google Scholar 

  • Cotou, E., Tsangaris, C., & Henry, M. (2013). Comparative study of biochemical and immunological biomarkers in three marine bivalves exposed at a polluted site. Environmental Science and Pollution Research, 20(3), 1812–1822.

    Article  CAS  Google Scholar 

  • Dean, H. K. (2008). The use of polychaetes (Annelida) as indicator species of marine pollution: a review. Revista de Biología Tropical, 56(4), 11–38.

    Google Scholar 

  • Diawara, M., Tlig-Zouari, S., & Rabaoui, L. (2008). Impact of management on the diversity of macrobenthic communities in Tunis north lagoon: Systematics. Cahiers de Biologie Marine, 49, 1–16.

    Google Scholar 

  • Díaz-Castañeda, V., & Reish, D. (2009). Polychaetes in environmental studies. In D. Shain (Ed.), Annelids as model systems in the biological sciences (pp. 205–227). J. Wiley & Sons.

  • El Mahrad, B., Abalansa, S., Newton, A., Icely, J., Snoussi, M., & Kacimi, I. (2020). Social-environmental analysis for the management of coastal lagoons in North Africa. Frontiers in Environmental Science.

  • Eriksen, K. D. H., Daae, H. L., & Andersen, R. A. (1988). Evidence of presence of heavy metal-binding proteins in polychaete species. Comparative Biochemistry and Physiology, Part C: Comparative Pharmacology, 91(2), 377–384.

    Article  Google Scholar 

  • Esteves, F. A., Caliman, A., Santangelo, J. M., Guariento, R. D., Farjalla, V. F., & Bozelli, R. L. (2008). Neotropical coastal lagoons: an appraisal of their biodiversity, functioning, threats and conservation management. Brazilian Journal of Biology, 68(4), 967–981.

    Article  CAS  Google Scholar 

  • Freitas, R., Coelho, D., Pires, A., Soares, A. M., Figueira, E., & Nunes, B. (2015). Preliminary evaluation of Diopatra neapolitana regenerative capacity as a biomarker for paracetamol exposure. Environmental science and pollution research international, 22(17), 13382–13392.

    Article  CAS  Google Scholar 

  • Freitas, R., Costa, E., Velez, C., Santos, J., Lima, A., Oliveira, C., et al. (2012). Looking for suitable biomarkers in benthic macroinvertebrates inhabiting coastal areas with low metal contamination: comparison between the bivalve Cerastoderma edule and the Polychaete Diopatra neapolitana. Ecotoxicology and environmental safety, 75(1), 109–118.

    Article  CAS  Google Scholar 

  • Fujimoto, Y., Sakuma, S., Inoue, T., Uno, E., & Fujita, T. (2002). The endocrine disruptor nonylphenol preferentially blocks cyclooxygenase-1. Life Sciences, 70(19), 2209–2214.

    Article  CAS  Google Scholar 

  • Gagné, F. (2014). Chapter 11 - Biomarkers of Infection and Diseases. In F. Gagné (Ed.), Biochemical Ecotoxicology. Academic Press (pp. 197–207). Oxford.

  • Gagné, F., André, C., Cejka, P., Hausler, R., & Fournier, M. (2011). Evidence of neuroendocrine disruption in freshwater mussels exposed to municipal wastewaters. The Science of the Total Environment., 409(19), 3711–3718.

    Article  Google Scholar 

  • Garcês, J., & Costa, M. H. (2009). Trace metals in populations of Marphysa sanguinea (Montagu, 1813) from Sado estuary: Effect of body size on accumulation. Scientia Marina, 73(3), 605–616.

    Article  Google Scholar 

  • Geracitano, L. A., Bocchetti, R., Monserrat, J. M., Regoli, F., & Bianchini, A. (2004). Oxidative stress responses in two populations of Laeonereis acuta (Polychaeta, Nereididae) after acute and chronic exposure to copper. Marine Environmental Research, 58(1), 1–17.

    Article  CAS  Google Scholar 

  • Girón-Pérez, M. I. (2010). Relationships between innate immunity in bivalve molluscs and environmental pollution. Invertebrate Survival Journal, 7, 149–156.

    Google Scholar 

  • González-Fernández, C., Albentosa, M., Campillo, J. A., Viñas, L., Franco, A., & Bellas, J. (2016). Effect of mussel reproductive status on biomarker responses to PAHs: Implications for large-scale monitoring programs. Aquatic Toxicology, 177, 380–394.

    Article  Google Scholar 

  • Gourdon, I., Guérin, M. C., Torreilles, J., & Roch, P. (2001). Nitric Oxide Generation by Hemocytes of the Mussel Mytilus galloprovincialis. Nitric Oxide, 5(1), 1–6.

    Article  CAS  Google Scholar 

  • Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite and (15N) nitrate in biological fluids. Analytical Biochemistry, 126, 131–138.

    Article  CAS  Google Scholar 

  • Guemouda, M., Meghlaoui, Z., Daas, T., Daas-Maamcha, O., & Scaps, P. (2014). Monitoring pollution in East Algerian coasts using biochemical markers in the polychaete annelid Perinereis cultrifera. Annals of Biological Research, 5(2), 31–40.

    Google Scholar 

  • Gust, M., Gélinas, M., Fortier, M., Fournier, M., & Gagné, F. (2012). In vitro immunotoxicity of environmentally representative antibiotics to the freshwater mussel Elliptio complanata. Environmental Pollution, 169, 50–58.

    Article  CAS  Google Scholar 

  • Hellal, M., Hellal, F., El Khemissi, Z., Jebali, R., & Dachraoui, M. (2011). Trace metals in algae and sediments from the North-Eastern Tunisian lagoons. Bulletin of environmental contamination and toxicology, 86(2), 194–198.

    Article  Google Scholar 

  • Hutchings, P. (1998). Biodiversity and functioning in benthic sediments. Biodiversity and Conservation, 7, 1133–1145.

    Article  Google Scholar 

  • Hylland, K., Ruus, A., Grung, M., & Green, N. (2009). Relationships between physiology, tissue contaminants, and biomarker responses in Atlantic Atlantic cod (Gadhus morhua L.). Journal of Toxicology and Environmental Health, Part A, 72, 226–233.

    Article  CAS  Google Scholar 

  • Johnson, J. A., Finn, K. A., & Siegel, F. L. (1992). Tissue distribution of enzymic methylation of glutathione S-transferase and its effects on catalytic activity. Methylation of glutathione S-transferase 11–11 inhibits conjugating activity towards 1-chloro-2,4-dinitrobenzene. Biochemical journal, 282 (1), 279–289.

  • Jørgensen, A., Giessing, A. M. B., Rasmussen, L. J., & Andersen, O. (2008). Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes. Marine Environmental Research, 65, 171–186.

    Article  Google Scholar 

  • Kauppi, L., Bernard, G., Bastrop, R., Norkko, A., & Norkko, J. (2018). Increasing densities of an invasive polychaete enhance bioturbation with variable effects on solute fluxes. Scientific Reports, 8.

  • Lahbib, Y., Mleiki, A., Marigomez, I., & El Menif, N. (2013). Copper, zinc, and cadmium body concentrations in Hexaplex trunculus collected from the Tunisian coast. Environmental Monitoring and Assessment, 185, 8967–8975.

    Article  CAS  Google Scholar 

  • Lee, Y. C., & Yang, D. (2002). Determination of lysozyme activities in a microplate format. Analytical Biochemistry, 310, 223–224.

    Article  CAS  Google Scholar 

  • Lewis, C., & Galloway, T. (2008). Genotoxic damage in polychaetes: a study of species and cell-type sensitivities. Mutation Research, 654(1), 69–75.

    Article  CAS  Google Scholar 

  • Liu, Z., Li, M., Yi, Q., Wang, L., & Song, L. (2018). The neuroendocrine-immune regulation in response to environmental stress in marine bivalves. Frontiers in Physiology, 13(9), 1–10.

    Google Scholar 

  • Livingstone, D. R., & Goldfarb, P. S. (1998). Biomonitoring in the aquatic environment: Use of cytochrome P 4501A and other molecular biomarkers in fish and mussels. In J. M. Lynch, & A. Wiseman (Eds.), Environmental biomonitoring. the biotechnology, ecotoxicology interface (pp. 101–129). Cambridge: Cambridge University Press.

  • López, E., & Richter, A. (2017). Non-indigenous species (NIS) of polychaetes (Annelida: Polychaeta) from the Atlantic and Mediterranean coasts of the Iberian Peninsula: an annotated checklist. Helgoland Marine Research, 71.

  • Mai, W. J., & Wang, W. N. (2010). Protection of blue shrimp (Litopenaeus stylirostris) against the White Spot Syndrome Virus (WSSV) when injected with shrimp lysozyme. Fish & Shellfish Immunology, 28(4), 727–733.

    Article  CAS  Google Scholar 

  • Mdaini, Z., El Cafsi, M., & Gangné, J. P. (2020). Seasonal trace metal contents in sediments and in the polychaete annelid Marphysa sanguinea (Montagu, 1813) in Tunis Lagoon. Cahiers de Biologie Marine, 61, 9–24.

    Google Scholar 

  • Mdaini, Z., El Cafsi, M., Tremblay, R., Pharand, P., & Gagné, J. P. (2019). Spatio-temporal variability of biomarker responses and lipid composition of Marphysa sanguinea, Montagu (1813) in the anthropic impacted lagoon of Tunis. Marine Pollution Bulletin, 144, 275–286.

    Article  CAS  Google Scholar 

  • Min, E. Y., Cha, Y. J., & Kang, J. C. (2015). Effects of waterborne nickel on the physiological and immunological parameters of the Pacific abalone Haliotis discus hannai during thermal stress. Environmental science and pollution research international, 22(17), 13546–13555.

    Article  CAS  Google Scholar 

  • Mzoughi, N., & Chouba, L. (2011). Distribution and partitioning of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons between water, suspended particulate matter, and sediment in harbours of the West coastal of the Gulf of Tunis (Tunisia). Journal of Environmental Monitoring, 13, 689–698.

    Article  CAS  Google Scholar 

  • Olive, P. L. (1988). DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells. Environmental and molecular mutagenesis, 11, 487–495.

    Article  CAS  Google Scholar 

  • Olsgard, F., Brattegard, T., & Holthe, T. (2003). Polychaetes as surrogates for marine biodiversity: lower taxonomic resolution and indicator groups. Biodiversity and Conservation, 12, 1033–1049.

    Article  Google Scholar 

  • Oueslati, W., Helali, M., Mensi, I., Bayaoui, M., Touati, H., & Khadraoui, A. (2018). How useful are geochemical and mineralogical indicators in assessing trace metal contamination and bioavailability in a post-restoration Mediterranean lagoon? Environmental Science and Pollution Research, 25, 45–59.

    Article  Google Scholar 

  • Ozoh, P. T. (1992). The effect of temperature and salinity on copper body-burden and copper toxicity to Hediste (Nereis) diversicolor. Environmental Monitoring and Assessment, 21, 11–17.

    Article  CAS  Google Scholar 

  • Pamungkas, J., Glasby, C. J., Read, G. B., Wilson, S. P., & Costello, M. J. (2019). Progress and perspectives in the discovery of polychaete worms (Annelida) of the world. Helgoland Marine Research, 73, 4.

    Article  Google Scholar 

  • Pérez, E., Blasco, J., & Solé, M. (2004). Biomarker responses to pollution in two invertebrate species: Scrobicularia plana and Nereis diversicolor from the Cádiz bay (SW Spain). Marine Environmental Research, 58(2–5), 275–279.

    Article  Google Scholar 

  • Pires, A., Almeida, A., Calisto, V., Schneider, R. J., Esteves, V. I., Wrona, F. J., et al. (2016). Long-term exposure of polychaetes to caffeine: biochemical alterations induced in Diopatra neapolitana and Arenicola marina. Environmental Pollution, 214, 456–463.

    Article  CAS  Google Scholar 

  • Pires, A., Almeida, A., Correia, J., Calisto, V., Schneider, R. J., Esteves, V. I., et al. (2016). Long-term exposure to caffeine and carbamazepine: impacts on the regenerative capacity of the polychaete Diopatra neapolitana. Chemosphere, 146, 565–573.

    Article  CAS  Google Scholar 

  • Pires, A., Figueira, E., Moreira, A., Soares, A. M. V. M., & Freitas, R. (2015). The effects of water acidification, temperature, and salinity on the regenerative capacity of the polychaete Diopatra neapolitana. Marine Environmental Research, 106, 30–41.

    Article  CAS  Google Scholar 

  • Pires, A., Velez, C., Figueira, E., Soares, A., & Freitas, R. (2017). Effects of sediment contamination on physiological and biochemical responses of the polychaete Diopatra neapolitana, an exploited natural resource. Marine pollution bulletin., 119(1), 119–131.

    Article  CAS  Google Scholar 

  • Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., et al. (2017). Oxidative stress: Harms and benefits for human health. Oxidative medicine and cellular longevity, 2017, 8416763.

    Article  Google Scholar 

  • Reish, D. J., & Gerlinger, T. V. (1997). A review of the toxicological studies with polychaetous annelids. Bulletin of Marine Science, Miami, 60, 584–607.

    Google Scholar 

  • Renault, T. (2015). Immunotoxicological effects of environmental contaminants on marine bivalves. Fish and Shellfish Immunology, 46, 88–93.

    Article  CAS  Google Scholar 

  • Romeo, M., Bennani, N., Gnassia-Barelli, M., La Faurie, M., & Girard, J. P. (2000). Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquatic Toxicology, 48, 185–194.

    Article  CAS  Google Scholar 

  • Salvemini, D., Kim, S. F., & Mollace, V. (2013). Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications. American journal of physiology. Regulatory, integrative and comparative physiology, 304(7), R473–R487.

  • Sardi, A. E., Sandrini-Neto, L., & da S Pereira, L., Silva de Assis, H., Martins, C. C., Lana, P. D., & Camus, L. (2016). Oxidative stress in two tropical species after exposure to diesel oil. Environmental science and pollution research international, 23(20), 20952–20962.

    Article  CAS  Google Scholar 

  • Skouras, A., Broeg, K., Dizer, H., Westernhagen, H., Hansen, P. D., & Steinhagen, D. (2003). The use of innate immune responses as biomarkers in a program of integrated biological effects monitoring on flounder (Platichthys flesus) from the southern North Sea. Helgoland Marine Research, 57, 190–198.

    Article  Google Scholar 

  • Tafalla, C., Gómez-León, J., Novoa, B., & Figueras, A. (2003). Nitric oxide production by carpet shell clam (Ruditapes decussatus) hemocytes. Developmental and comparative immunology, 27(3), 197–205.

    Article  CAS  Google Scholar 

  • Thain, J., Matthiessen, P., Bifield, S. & McMinn, W. (1994). Assessing sediment quality by bioassay in UK coastal water and estuaries. Proceedings of the Scientific Symposium on the North Sea Quality Status Report, 1–10.

  • Viarengo, A., Lowe, D., Bolognesi, C., Fabbri, E., & Koehler, A. (2007). The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comparative biochemistry and physiology. Toxicology & pharmacology, 146(3), 281–300.

  • Wang, Q., Wang, C., Mu, C., Wu, H., Zhang, L., & Zhao, J. (2013). A Novel C-Type Lysozyme from Mytilus galloprovincialis: Insight into innate immunity and molecular evolution of invertebrate C-type lysozymes. PLoS One, 8(6), e67469.

    Article  CAS  Google Scholar 

  • Watson, G. J., Pini, J. M., & Richir, J. (2018). Chronic exposure to copper and zinc induces DNA damage in the polychaete Alitta virens and the implications for future toxicity of coastal sites. Environmental pollution (Barking, Essex: 1987), 243(Pt B), 1498–1508.

  • Won, E., Kim, R., Rhee, J., Park, G., Lee, J., Shin, K., & Lee, Y. (2011). Response of glutathione S-transferase (GST) genes to cadmium exposure in the marine pollution indicator worm, Perinereis nuntia. Comparative biochemistry and physiology. Toxicology & pharmacology, 154(2), 82–92.

Download references

Acknowledgements

We are thankful to the University of Tunis El Manar for their scholarship, and the staff at the Institut des sciences de la mer de Rimouski and Université de Québec à Rimouski for their guidance and financial support. Special acknowledgments are extended to Professor Francois Gagné and his team in Centre Saint-Laurent (Montréal, QC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaoula Telahigue.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mdaini, Z., Telahigue, K., Hajji, T. et al. Comparative biomarker responses to urban pollution in three polychaete species: Perinereis cultrifera, Diopatra neapolitana, and Marphysa sanguinea from the lagoon of Tunis. Environ Monit Assess 193, 119 (2021). https://doi.org/10.1007/s10661-021-08906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08906-5

Keywords