Spaceborne C-band SAR remote sensing–based flood mapping and runoff estimation for 2019 flood scenario in Rupnagar, Punjab, India

Abstract

Floods are one of the most disastrous and dangerous catastrophes faced by humanity for ages. Though mostly deemed a natural phenomenon, floods can be anthropogenic and can be equally devastating in modern times. Remote sensing with its non-evasive data availability and high temporal resolution stands unparalleled for flood mapping and modelling. Since floods in India occur mainly in monsoon months, optical remote sensing has limited applications in proper flood mapping owing to lesser number of cloud-free days. Remotely sensed microwave/synthetic aperture radar (SAR) data has penetration ability and has high temporal data availability, making it both weather independent and highly versatile for the study of floods. This study uses space-borne SAR data in C-band with VV (vertically emitted and vertically received) and VH (vertically emitted and horizontally received) polarization channels from Sentinel-1A satellite for SAR interferometry-based flood mapping and runoff modeling for Rupnagar (Punjab) floods of 2019. The flood maps were prepared using coherence-based thresholding, and digital elevation map (DEM) was prepared by correlating the unwrapped phase to elevation. The DEM was further used for Soil Conservation Service-curve number (SCS-CN)-based runoff modelling. The maximum runoff on 18 August 2019 was 350 mm while the average daily rainfall was 120 mm. The estimated runoff significantly correlated with the rainfall with an R2 statistics value of 0.93 for 18 August 2019. On 18 August 2019, Rupnagar saw the most devastating floods and waterlogging that submerged acres of land and displaced thousands of people.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Would be provided on a reasonable request.

References

  1. Abdeldayem, O. M., Eldaghar, O., Mostafa, M. K., Habashy, M. M., Hassan, A., Mahmoud, H., & Peters, R. W. (2020). Mitigation plan and water harvesting of flashflood in arid rural communities using modeling approach: A case study in Afouna village. Egypt. MDPI Water, 12(9), 1–24. https://doi.org/10.3390/W12092565.

    Article  Google Scholar 

  2. Ahluwalia, R. S., Rai, S. P., Gupta, A. K., Dobhal, D. P., Tiwari, R. K., Garg, P. K., & Kesharwani, K. (2016). Towards the understanding of the flash flood through isotope approach in Kedarnath valley in June 2013, Central Himalaya, India. Natural Hazards, 82(1), 321–332. https://doi.org/10.1007/s11069-016-2203-6.

    Article  Google Scholar 

  3. Alexander, L. V., & Arblaster, J. M. (2009). Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. International Journal of Climatology, 29(3), 417–435. https://doi.org/10.1002/joc.1730.

    Article  Google Scholar 

  4. Amutha, R., & Porchelvan, P. (2009). Estimation of surface run-off in Malattar sub-watershed using SCS-CN method. Journal of the Indian Society of Remote Sensing, 37(2), 291. https://doi.org/10.1007/s12524-009-0017-7.

    Article  Google Scholar 

  5. Behzad, A., Sarvati, M., & Moghimi, E. (2012). Estimating flood potentia l emphasizing on Geomorphologic characteristics in Tarikn Basin using the SC S method. European Journal of Experimental Biology, 2(5), 1928–1935.

    Google Scholar 

  6. Bézy, J., Sierk, B., Caron, J., Veihelmann, B., Martin, D., Langen, J., & Zhu, A. G. N. (2014). The Copernicus Sentinel-5 mission for operational atmospheric monitoring : Status and developments. SPIE Remote Sensing, 9241, 1–11. https://doi.org/10.1117/12.2068177.

    Article  Google Scholar 

  7. Boerner, W. M. (2007). Recent advancements of radar remote sensing; air- and space-borne multimodal SAR remote sensing in forestry, Agriculture, Geology, Geophysics (Volcanology and Technology): Advances in P0L-SAR, IN-SAR, POLinSAR and POL-DIFF-IN-SAR Sensing and Ima. 2007 Asia-Pacific Microwave Conferencehttps://doi.org/10.1109/APMC.2007.4555164.

  8. Borah, S. B., Sivasankar, T., Ramya, M. N. S., & Raju, P. L. N. (2018). Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data. Environmental Monitoring and Assessment, 190(9), 520. https://doi.org/10.1007/s10661-018-6893-y.

    Article  Google Scholar 

  9. Boughton, W. C. (1989). A review of the USDA SCS curve number method. Soil Research, 27(3), 511–523. https://doi.org/10.1071/SR9890511.

    Article  Google Scholar 

  10. Bronstert, A. (2003). Floods and Climate Change: Interactions and Impacts. Risk Analysis, 23(3), 545–557. https://doi.org/10.1111/1539-6924.00335.

  11. Cheng, Q., Ko, C., Yuan, Y., Ge, Y., & Zhang, S. (2006). GIS modeling for predicting river runoff volume in ungauged drainages in the Greater Toronto Area. Canada. Computers & geosciences, 32(8), 1108–1119. https://doi.org/10.1016/j.cageo.2006.02.005.

    Article  Google Scholar 

  12. Chini, M., Pelich, R., Pulvirenti, L., Pierdicca, N., Hostache, R., & Matgen, P. (2019). Sentinel-1 InSAR coherence to detect floodwater in urban areas: Houston and hurricane Harvey as a test case. Remote Sensing, 11(2), 1–20. https://doi.org/10.3390/rs11020107.

    Article  Google Scholar 

  13. Chung, H. W., Liu, C. C., Cheng, I. F., Lee, Y. R., & Shieh, M. C. (2015). Rapid response to a typhoon-induced flood with an SAR-derived map of inundated areas: Case study and validation. Remote Sensing, 7(9), 11954–11973. https://doi.org/10.3390/rs70911954.

    Article  Google Scholar 

  14. Clauss, K., Ottinger, M., & Kuenzer, C. (2018). Mapping rice areas with Sentinel-1 time series and superpixel segmentation. International Journal of Remote Sensing, 39(5), 1399–1420. https://doi.org/10.1080/01431161.2017.1404162.

    Article  Google Scholar 

  15. Cosgrove, W. J., & Loucks, D. P. (2015). Water management: Current and future challenges and research directions. Water Resources Research, 51(6), 4823–4839. https://doi.org/10.1002/2014WR016869.

    Article  Google Scholar 

  16. Damodaran, H. (2008). The Paradox of Northern Farming Communities BT - India’s New Capitalists: Caste, Business, and Industry in a Modern Nation. In H. Damodaran (Ed.) (pp. 259–296). London: Palgrave Macmillan UK. https://doi.org/10.1057/9780230594128_8.

  17. Dongchen, E., Zhou, C., & Liao, M. (2004). Application of SAR Interferometry on DEM Generation of the Grove Mountains. Photogrammetric Engineering & Remote Sensing, 70(10), 1145–1149. https://doi.org/10.14358/PERS.70.10.1145.

  18. Frederick, S. E., Cebula, R. P., & Heath, D. F. (1986). Instrument characterization for the detection of long-term changes in stratospheric ozone: An analysis of the SBUY/2 radiometer. Journal of Atmospheric and Oceanic Technology, 3(3), 472–480. https://doi.org/10.1175/1520-0426(1986)003%3c0472:ICFTDO%3e2.0.CO;2.

    Article  Google Scholar 

  19. Geetha, K., Mishra, S. K., Eldho, T. I., Rastogi, A. K., & Pandey, R. P. (2008). SCS-CN-based continuous simulation model for hydrologic forecasting. Water Resources Management, 22(2), 165–190. https://doi.org/10.1007/s11269-006-9149-5.

    Article  Google Scholar 

  20. Geetha, M., & Rastogi, & Pandey. . (2007). Modifications to SCS-CN method for long-term hydrologic simulation. Journal of Irrigation and Drainage Engineering, 133(5), 475–486. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:5(475).

    Article  Google Scholar 

  21. Grandin, R., Klein, E., Métois, M., & Vigny, C. (2016). Three-dimensional displacement field of the 2015 Mw8.3 Illapel earthquake (Chile) from across- and along-track Sentinel-1 TOPS interferometry. Geophysical Research Letters, 43(6), 2552–2561. https://doi.org/10.1002/2016GL067954.

    Article  Google Scholar 

  22. Gupta, S., Javed, A., & Datt, D. (2003). Economics of flood protection in India BT - flood problem and management in South Asia. In M. M. Q. Mirza, A. Dixit, & A. Nishat (Eds.) (pp. 199–210). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-0137-2_10.

  23. Heino, R., Brázdil, R., Forland, E., Tuomenvirta, H., Alexandersson, H., Beniston, M., & Wibig, J. (1999). Progress in the study of climatic extremes in northern and central Europe. Climatic Change, 42(1), 151–181. https://doi.org/10.1023/A:1005420400462.

    Article  Google Scholar 

  24. Hoomehr, S., Schwartz, J. S., Yoder, D. C., Drumm, E. C., & Wright, W. (2013). Curve numbers for low-compaction steep-sloped reclaimed mine lands in the Southern Appalachians. Journal of Hydrologic Engineering, 18(12), 1627–1638. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000746.

    Article  Google Scholar 

  25. Hughes, L. (2000). Biological consequences of global warming: Is the signal already apparent? Trends in Ecology & Evolution, 15(2), 56–61. https://doi.org/10.1016/S0169-5347(99)01764-4.

    CAS  Article  Google Scholar 

  26. Jayraman, V., Chandrasekhar, M., & Rao, U. (1997). Managing the natural disasters from space technology inputs. Acta Astronautica, 40(2), 291–325. https://doi.org/10.1016/S0094-5765(97)00101-X.

    Article  Google Scholar 

  27. Jung, J., Kim, D., Member, S., Lavalle, M., & Yun, S. (2016). Coherent change detection using InSAR temporal decorrelation model: A case study for volcanic ash detection. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 5765–5775. https://doi.org/10.1109/TGRS.2016.2572166.

    Article  Google Scholar 

  28. Kadam, A. K., Kale, S. S., Pande, N. N., Pawar, N. J., & Sankhua, R. N. (2012). Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of Western India Using SCS-CN Method. Water Resources Management, 26(9), 2537–2554. https://doi.org/10.1007/s11269-012-0031-3.

    Article  Google Scholar 

  29. Kale, V. S., Ely, L. L., Enzel, Y., & Baker, V. R. (1994). Geomorphic and hydrologic aspects of monsoon floods on the Narmada and Tapi Rivers in central India. Geomorphology and Natural Hazards: Proceedings of the 25th Binghamton Symposium in Geomorphology, Held 24th September–25,1994 at SUNY, Binghamton, USA, 10, 157–168. https://doi.org/10.1016/B978-0-444-82012-9.50015-3.

  30. Katimon, A., Zulkifli, M., & Yunos, M. (2003). Flood potential estimation of two small vegetated watersheds. Malaysian Journal of Civil Engineering, 15(1), 1–15. https://doi.org/10.11113/mjce.v15.103.

  31. Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. Remote Sensing (Vol. 3). https://doi.org/10.3390/rs3050878.

  32. Kuenzer, C., Guo, H., Huth, J., Leinenkugel, P., Li, X., & Dech, S. (2013). Flood mapping and flood dynamics of the mekong delta: ENVISAT-ASAR-WSM based time series analyses. Remote Sensing, 5(2), 687–715. https://doi.org/10.3390/rs5020687.

    Article  Google Scholar 

  33. Kumar, A., Gupta, A. K., Bhambri, R., Verma, A., Tiwari, S. K., & Asthana, A. K. L. (2018). Assessment and review of hydrometeorological aspects for cloudburst and flash flood events in the third pole region (Indian Himalaya). Polar Science, 18, 5–20. https://doi.org/10.1016/j.polar.2018.08.004.

    Article  Google Scholar 

  34. Lanari, R., Fornaro, G., Riccio, D., Migliaccio, M., Papathanassiou, K. P., Moreira, J. R., & Coltelli, M. (1996). Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry: the Etna case study. IEEE Transactions on Geoscience and Remote Sensing, 34(5), 1097–1114. https://doi.org/10.1109/36.536526.

    Article  Google Scholar 

  35. Latha, M., Rajendran, M., & Murugappan, A. (2012). Comparison of GIS-based SCS-CN and Strange table Method of Rainfall-Runoff Models for. International Journal of Scientific & Engineering Research, 3(10), 3–7. Retrieved from https://www.ijser.org/paper/Comparison-of-GIS-based-SCS-CN-and-Strange-table-Method-of-Rainfall-Runoff.html.

  36. Lloyd, G. E. (1987). Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques. Mineralogical Magazine, 51(359), 3–19. https://doi.org/10.1180/minmag.1987.051.359.02.

    CAS  Article  Google Scholar 

  37. Mishra, S. K., Jain, M. K., & Singh, V. P. (2004). Evaluation of the SCS-CN-based model incorporating antecedent moisture. Water Resources Management, 18(6), 567–589. https://doi.org/10.1007/s11269-004-8765-1.

    Article  Google Scholar 

  38. Mishra, S. K., & Singh, V. P. (1999). Another look at SCS-CN method. Journal of Hydrologic Engineering, 4(3), 257–264. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:3(257).

    Article  Google Scholar 

  39. Mishra, S. K., & Singh, V. P. (2004). Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates. Hydrological processes, 18(17), 3323–3345. https://doi.org/10.1002/hyp.1223.

    Article  Google Scholar 

  40. Mishra, S. K., Pandey, R. P., Jain, M. K., & Singh, V. P. (2008). A rain duration and modified AMC-dependent SCS-CN procedure for long duration rainfall-runoff events. Water Resources Management, 22(7), 861–876. https://doi.org/10.1007/s11269-007-9196-6.

    Article  Google Scholar 

  41. Mishra, S., Mazumdar, S., & Suar, D. (2010). Place attachment and flood preparedness. Journal of Environmental Psychology, 30(2), 187–197. https://doi.org/10.1016/j.jenvp.2009.11.005.

    Article  Google Scholar 

  42. Murmu, P., Kumar, M., Lal, D., Sonker, I., & Kumar, S. (2019). Groundwater for Sustainable Development Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district , Jharkhand , India. Groundwater for Sustainable Development, 9(October 2018), 100239. https://doi.org/10.1016/j.gsd.2019.100239.

  43. Naab, F. Z., Dinye, R. D., & Kasanga, R. K. (2013). Urbanization and its impact on agricultural lands in growing cities in developing countries: a case study of Tamale in Ghana. Modern Social Science Journal, 2(2), 256–287.

    Google Scholar 

  44. Nishida, K., Nemani, R. R., Glassy, J. M., & Running, S. W. (2003). Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 493–501. https://doi.org/10.1109/TGRS.2003.811744.

    Article  Google Scholar 

  45. Pandit, A., & Heck, H. H. (2009). Estimations of soil conservation service curve numbers for concrete and asphalt. Journal of Hydrologic Engineering, 14(4), 335–345. https://doi.org/10.1061/(ASCE)1084-0699(2009)14:4(335).

    Article  Google Scholar 

  46. Peters, G., McCall, M. K., & Westen, C. (2012). Coping strategies and risk manageability: using participatory geographical information systems to represent local knowledge. Disasters, 36(1), 1–27. https://doi.org/10.1111/j.1467-7717.2011.01247.x.

    Article  Google Scholar 

  47. Phalkey, R., Dash, S., Mukhopadhyay, A., Runge-Ranzinger, S., & Marx, M. (2012). Prepared to react? Assessing the functional capacity of the primary health care system in rural Orissa, India to respond to the devastating flood of September 2008. Global Health Action, 5(1), 10964. https://doi.org/10.3402/gha.v5i0.10964.

    Article  Google Scholar 

  48. Ramakrishnan, D., Bandyopadhyay, A., & Kusuma, K. N. (2009). SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India. Journal of Earth System Science, 118(4), 355–368. https://doi.org/10.1007/s12040-009-0034-5.

    Article  Google Scholar 

  49. Revi, A. (2008). Climate change risk: An adaptation and mitigation agenda for Indian cities. Environment and Urbanization, 20(1), 207–229. https://doi.org/10.1177/0956247808089157.

    Article  Google Scholar 

  50. Saini, P., Saini, P., Kaur, J. J., Francies, R. M., Gani, M., Rajendra, A. A., & Chauhan, S. S. (2020). Molecular approaches for harvesting natural diversity for crop improvement BT - Rediscovery of genetic and genomic resources for future food security. In R. K. Salgotra & S. M. Zargar (Eds.) (pp. 67–169). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-0156-2_3.

  51. Sandwell, D. T., & Price, E. J. (1998). Phase gradient approach to stacking interferograms. Journal of Geophysical Research: Solid Earth, 103(B12), 30183–30204. https://doi.org/10.1029/1998JB900008.

    Article  Google Scholar 

  52. Sanyal, J., & Lu, X. X. (2004). Application of remote sensing in flood management with special reference to Monsoon Asia: A review. Natural Hazards, 33(2), 283–301. https://doi.org/10.1023/B:NHAZ.0000037035.65105.95.

    Article  Google Scholar 

  53. Sanyal, J., & Lu, X. X. (2005). Remote sensing and GIS-based flood vulnerability assessment of human settlements: a case study of Gangetic West Bengal, India. Hydrological Processes, 19(18), 3699–3716. https://doi.org/10.1002/hyp.5852.

    Article  Google Scholar 

  54. Satheeshkumar, S., Venkateswaran, S., & Kannan, R. (2017). Rainfall–run-off estimation using SCS–CN and GIS approach in the Pappiredipatti watershed of the Vaniyar sub-basin, South India. Modeling Earth Systems and Environment, 3(1), 1–8. https://doi.org/10.1007/s40808-017-0301-4.

    Article  Google Scholar 

  55. Schwartz, S. S. (2010). Effective curve number and hydrologic design of pervious concrete storm-water systems. Journal of Hydrologic Engineering, 15(6), 465–474. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000140.

    Article  Google Scholar 

  56. Sharma, S. B., & Singh, A. K. (2014). Assessment of the flood potential on a lower Tapi basin tributary using SCS-CN method integrated with remote sensing & GIS data. Journal of Geography & Natural Disasters, 4(2), 1–7. https://doi.org/10.4172/2167-0587.1000128.

    Article  Google Scholar 

  57. Sharma, S., & Singh, A. (2015). Assessment of the flood potential on a lower tapi basin tributary using SCS- CN method integrated with remote sensing & GIS data. Journal of Geography & Natural Disasters, (August 2014). https://doi.org/10.4172/2167-0587.1000128.

  58. Shen, X., Wang, D., Mao, K., Anagnostou, E., & Hong, Y. (2019). Inundation extent mapping by synthetic aperture radar: A review. Remote Sensing, 11(7), 1–17. https://doi.org/10.3390/RS11070879.

    CAS  Article  Google Scholar 

  59. Sivakumar, M. V. K. (2007). Interactions between climate and desertification. Agricultural and Forest Meteorology, 142(2), 143–155. https://doi.org/10.1016/j.agrformet.2006.03.025.

    Article  Google Scholar 

  60. Small, D., Pasquali, P., & Fuglistaler, S. (1996). A comparison of phase to height conversion methods for SAR interferometry. In IGARSS ’96. 1996 International Geoscience and Remote Sensing Symposium (Vol. 1, pp. 342–344 vol.1). https://doi.org/10.1109/IGARSS.1996.516334.

  61. Soulis, K. X., & Valiantzas, J. D. (2012). SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach. Hydrology and Earth System Sciences, 16(3), 1001–1015. https://doi.org/10.5194/hess-16-1001-2012.

    Article  Google Scholar 

  62. Tapete, D. (2018). Appraisal of opportunities and perspectives for the systematic condition assessment of heritage sites with copernicus Sentinel-2 high-resolution multispectral imagery. MDPI Remote Sensing, 1–22. https://doi.org/10.3390/rs10040561.

  63. Tripathi, A., & Kumar, S. (2019). Effect of phase filtering on interferometry based displacement analysis of cultural heritage sites. In 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) (pp. 1–5). IEEE. https://doi.org/10.1109/UPCON.2018.8597027.

  64. Tripathi, A., & Tiwari, R. K. (2019 a). C-band SAR Interferometry based flood inundation mapping for Gorakhpur and adjoining areas. In 2019 International Conference on Computer, Electrical & Communication Engineering (ICCECE) (pp. 1–6). https://doi.org/10.1109/ICCECE44727.2019.9001870.

  65. Tripathi, A., & Tiwari, R. K. (2019 b). Utilization of space-borne C-band SAR data for analysis of flood impact on agriculture and its management. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(3/W6). https://doi.org/10.5194/isprs-archives-XLII-3-W6-521-2019.

  66. Tripathi, A., & Tiwari, R. K. (2019 c). Mapping of deflection caused due to hydrostatic pressure using Differential SAR Interferometry ( DInSAR ) on Bhakhra dam. IEEE XPLORE. https://doi.org/10.1109/UPCON47278.2019.8980117.

  67. Tripathi, A., & Tiwari, R. K. (2020). Synergetic utilization of sentinel-1 SAR and sentinel-2 optical remote sensing data for surface soil moisture estimation for Rupnagar, Punjab, India. Geocarto International, 1–22.https://doi.org/10.1080/10106049.2020.1815865.

  68. Tsai, Y. L. S., Dietz, A., Oppelt, N., & Kuenzer, C. (2019). Remote sensing of snow cover using spaceborne SAR: A review. Remote Sensing, 11(12). https://doi.org/10.3390/rs11121456.

  69. Wałęga, A., & Rutkowska, A. (2015). Usefulness of the modified NRCS-CN method for the assessment of direct runoff in a mountain catchment. Acta Geophysica, 63(5), 1423–1446. https://doi.org/10.1515/acgeo-2015-0043.

    Article  Google Scholar 

  70. Wright, R. (2009). The Ancient Indus - Urbanism, Economy and Society. In Ancient Pakistan (Vol. XX, p. 2009). Retrieved from http://journals.uop.edu.pk/papers/AP_v20_249to249.pdf.

  71. Xu, F., & Jin, Y. (2007). Automatic reconstruction of building objects from multiaspect meter-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing, 45(7), 2336–2353. https://doi.org/10.1109/TGRS.2007.896614.

    Article  Google Scholar 

  72. Zhang, M., Chen, F., Liang, D., Tian, B., & Yang, A. (2020). Use of sentinel-1 grd SAR images to delineate flood extent in Pakistan. Sustainability (Switzerland), 12(14), 1–19. https://doi.org/10.3390/su12145784.

    Article  Google Scholar 

  73. Zhu, L., Suomalainen, J., Liu, J., Hyyppä, J., Kaartinen, H., & Haggren, H. (2018). A review: remote sensing sensors. Multi-purposeful application of geospatial data, 19-42.https://doi.org/10.5772/intechopen.71049.

Download references

Acknowledgments

This study was supported by the ESRI ArcGIS team, SNAP Software team, the European Space Agency (ESA), Alaska Satellite Facility, and the Department of Civil Engineering IIT Ropar.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reet Kamal Tiwari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A., Attri, L. & Tiwari, R.K. Spaceborne C-band SAR remote sensing–based flood mapping and runoff estimation for 2019 flood scenario in Rupnagar, Punjab, India. Environ Monit Assess 193, 110 (2021). https://doi.org/10.1007/s10661-021-08902-9

Download citation

Keywords

  • Coherence
  • DEM
  • Runoff
  • SAR interferometry
  • SCS-CN