Skip to main content

Advertisement

Log in

Anatomical, physiological, and chemical alterations in lichen (Parmotrema tinctorum (Nyl.) Hale) transplants due to air pollution in two cities of Brahmaputra Valley, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The lichen species Parmotrema tinctorum (Nyl.) Hale was transplanted in two cities—Tezpur (small) and Guwahati (large)—of the Brahmaputra Valley to assess the impact of air pollution on the anatomy and physiology, and accumulation of pollutants. Significant damage to the anatomy was observed in samples, and the degree of damage was found to be higher in the transplants of the larger city. In the lichen transplants from locations having high traffic density, the total chlorophyll content was found to fall; on the contrary, electrical conductivity was found to be higher. The exposed-to-control ratio showed severe accumulation of Cd in all the transplants. Elements such as Cd, Pb, and Zn were found to be enriched in all the lichen samples from both Guwahati as well as Tezpur city. Besides, Cr, Cu, K, and Ni were also realized to be enhanced to a moderate extent. The correlations of indicator metal species pairs showed that anthropogenic influence was quite clear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamo, P., Bargagli, R., Giordano, S., Modenesi, P., Monaci, F., Pittao, E., & Tretiach, M. (2008). Natural and pre-treatments induced variability in the chemical composition and morphology of lichens and mosses selected for active monitoring of airborne elements. Environmental Pollution, 152(1), 11–19.

    CAS  Google Scholar 

  • Agnan, Y., Séjalon-Delmas, N., Claustres, A., & Probst, A. (2013). Large scale atmospheric contribution of trace elements registered in foliose lichens in remote French areas. In E3S Web of Conferences, 1, 29001. https://doi.org/10.1051/e3sconf/20130129001.

  • Aksoy, A., Leblebici, Z., & Halici, M. G. (2010). Biomonitoring of heavy metal pollution using lichen (Pseudevernia furfuracea (L.) Zopf.) exposed in bags in a semi-arid region, Turkey. In Plant adaptation and phytoremediation (pp. 59–70). Dordrecht: Springer.

    Google Scholar 

  • Aprile, G. G., Catalano, I., Migliozzi, A., & Mingo, A. (2011). Monitoring epiphytic lichen biodiversity to detect environmental quality and air pollution: The case study of Roccamonfina Park (Campania Region -- Italy). In A. M. Moldoveanu (Ed.), Air pollution--New developments (pp. 227–244). https://doi.org/10.5772/17907.

  • Bačkor, M., & Loppi, S. (2009). Interactions of lichens with heavy metals. Biologia Plantarum, 53(2), 214–222.

    Google Scholar 

  • Bajpai, R., Upreti, D. K., Nayaka, S., & Kumari, B. (2010). Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India. Journal of Hazardous Materials, 174, 429–436.

    CAS  Google Scholar 

  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation Index (Igeo) to evaluate the soil contamination. Journal of Geology and Geophysics, 5, 237–240.

    Google Scholar 

  • Bargagli, R., & Mikhailova, I. (2002). Accumulation of inorganic contaminants. In P. L. Nimis, C. Scheidegger, & P. A. Wolseley (Eds.), Monitoring with lichens–Monitoring lichens (pp. 65–84). Dordrecht - Boston - London: Kluwer Academic Publishers.

    Google Scholar 

  • Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S., & Davison, A. W. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophyll a and b in lichens and higher plants. Environmental and Experimental Botany, 32, 85–110.

    CAS  Google Scholar 

  • Begum, A., & HariKrishna, S. (2010). Monitoring air pollution using lichens species in South Bangalore, Karnataka. International Journal of ChemTech Research, 2, 255–260.

    CAS  Google Scholar 

  • Bhuyan, P., Barman, N., Bora, J., Daimari, R., Deka, P., & Hoque, R. R. (2016). Attributes of aerosol bound water soluble ions and carbon, and their relationships with AOD over the Brahmaputra Valley. Atmospheric Environment, 142, 194–209.

    CAS  Google Scholar 

  • Bhuyan, P., Deka, P., Prakash, A., Balachandran, S., & Hoque, R. R. (2018). Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environmental Pollution, 234, 997–1010.

    CAS  Google Scholar 

  • Boamponsem, L. K., & de Freitas, C. R. (2017). Validation of Parmotrema reticulatum as a biomonitor of elemental air pollutants in Auckland, New Zealand. Journal of the Royal Society of New Zealand, 47(4), 275–293.

    Google Scholar 

  • Boonpragob, K. (2002). Monitoring physiological change in lichens: Total chlorophyll content and chlorophyll degradation. In P. L. Nimis et al. (Eds.), Monitoring with lichens--Monitoring Lichens (pp. 65–84). Dordrecht - Boston – London: Kluwer Academic Publishers.

    Google Scholar 

  • Brodo, I. M. (1961). Transplant experiments with corticolous lichens using a new technique. Ecology, 42(838–841), 1961.

    Google Scholar 

  • Chaparro, M. A. E., Chaparro, M. A. E., Castañeda-Miranda, M. D. C., Gargiulo, J. D., Lavornia, J. M., Natal, M., & Böhnel, H. N. (2020). Fine air pollution particles trapped by street tree barks: In situ magnetic biomonitoring. Environmental Pollution, 266(1), 11522. https://doi.org/10.1016/j.envpol.2020.115229.

    Article  CAS  Google Scholar 

  • Cicek, A., Koparal, A. S., Aslan, A., & Yazici, K. (2008). Accumulation of heavy metals from motor vehicles in transplanted lichens in an urban area. Communications in Soil Science and Plant Analysis, 39, 168–176.

    CAS  Google Scholar 

  • Conti, M. E., & Cecchetti, G. (2001). Biological monitoring:lichens as bioindicators of air pollution assessment—A review. Environmental Pollution, 114, 471–492.

    CAS  Google Scholar 

  • Daimari, R., Hoque, R. R., Nayaka, S., & Upreti, D. K. (2013). Atmospheric heavy metal accumulation in epiphytic lichens and their phorophytes in the Brahmaputra Valley. Asian Journal of Water, Environment and Pollution, 10(4), 1–12.

    CAS  Google Scholar 

  • Daimari, R., Nayaka, S., Upreti, D. K., & Hoque, R. R. (2017). New records of lichen for the mycota of Assam State, Eastern Himalaya. Indian Forester, 143(3), 239–244.

    Google Scholar 

  • Daimari, R., Bhuyan, P., Hussain, S., Nayaka, S., Mazumder, M. J., & Hoque, R. R. (2020). Biomonitoring by epiphytic lichen species—Pyxinecocoes (Sw.) Nyl.: Understanding characteristics of trace metal in ambient air of different landuses in mid-Brahmaputra Valley. Environmental Monitoring and Assessment, 192(1), 37.

    CAS  Google Scholar 

  • Deka, P., & Hoque, R. R. (2015). Chemical characterization of biomass fuel smoke particles of rural kitchens of South Asia. Atmospheric Environment, 108, 125–132.

    CAS  Google Scholar 

  • Deka, P., Bhuyan, P., Daimari, R., Sarma, K. P., & Hoque, R. R. (2016). Metallic species in PM 10 and source apportionment using PCA-MLR modeling over mid-Brahmaputra Valley. Arabian Journal of Geosciences, 9(5), 335.

    Google Scholar 

  • Deka, J., Baul, N., Bharali, P., Sarma, K. P., & Hoque, R. R. (2020). Soil PAHs against varied land use of a small city (Tezpur) of middle Brahmaputra Valley: Seasonality, sources, and long-range transport. Environmental Monitoring and Assessment, 192, 1–14.

    Google Scholar 

  • Demková, L., Bobul’ská, L., Árvay, J., Jezný, T., & Ducsay, L. (2017). Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia). Journal of Environmental Science and Health, Part A, 52(1), 30–36.

    Google Scholar 

  • U.S. EPA. (2003) IRIS Toxicological Review and Summary Documents For Zinc and Compounds (External Review Draft). Cincinnati, OH: US Environmental Protection Agency.

  • Frati, L., Brunialti, G., & Loppi, S. (2005). Problems related to lichen transplant to monitor trace element deposition in repeated surveys: A case study from Central Italy. Journal of Atmospheric Chemistry, 52, 221–230.

    CAS  Google Scholar 

  • Fyfe, W. S. (1974). Oxford chemistry series: Geochemistry. Oxford: Clarendon Press.

  • Gál, J., Hursthouse, A., Tatner, P., Stewart, F., & Welton, R. (2008). Cobalt and secondary poisoning in the terrestrial food chain: Data review and research gaps to support risk assessment. Environment International, 34(6), 821–838.

    Google Scholar 

  • Garty, J. (2001). Biomonitoring atmospheric heavy metals with lichens: Theory and application. Critical Reviews in Plant Sciences, 20(4), 309–371.

    CAS  Google Scholar 

  • Garty, J., Kloog, N., & Cohen, Y. (1998). Integrity of lichen cell membranes in relation to concentration of airborne elements. Archives of Environmental Contamination and Toxicology, 34, 136–144.

    CAS  Google Scholar 

  • Garty, J., Weissman, L., Tamir, O., Beer, S., Cohen, Y., Karnieli, Y., & Orlovsky, L. (2000). Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacera exposed to air pollution. Physiologia Plantarum, 109, 410–418.

    CAS  Google Scholar 

  • Godinho, R. M., Freitas, M. C., & Wolterbeek, H. T. (2004). Assessment of lichen vitality during a transplantation experiment to a polluted site. Journal of Atmospheric Chemistry, 49(1-3), 355–361.

    CAS  Google Scholar 

  • Guidotti, M., Stella, D., Dominici, C., Blasi, G., Owczarek, M., Vitali, M., & Protano, C. (2009). Monitoring of traffic-related pollution in a province of Central Italy with transplanted lichen Pseudovernia furfuracea. Bulletin of Environmental Contamination and Toxicology, 83(6), 852.

    CAS  Google Scholar 

  • Hazarika, N., Daimari, R., Nayaka, S., & Hoque, R. R. (2011). What do epiphytic lichens of Guwahati city indicate? Current Science, 101(7), 824.

    Google Scholar 

  • Ite, A. E., Udousoro, I. I., & Ibok, U. J. (2014). Distribution of some atmospheric heavy metals in lichen and moss samples collected from Eket and Ibeno Local Government Areas of Akwa Ibom State, Nigeria. American journal of Environmental protection, 2(1), 22–31.

    CAS  Google Scholar 

  • Kim, J. H., Gibb, H. J., Howe, P., & Sheffer, M. (2006). Cobalt and inorganic cobalt compounds: Concise International Chemical Assessment Document, No 69 9789241530699 9241530693. Geneva: World Health Organization.

    Google Scholar 

  • Knudson, E. J., Duewer, D. L., Christian, G. D. & Larson, T. V. (1977). Application of factor analysis to the study of rain chemistry in the Puget Sound region. In: B.R. Kowalski (Ed.), Chemometric: Theory and Application (pp.80–116). Washington, DC: ACS Symposium Series.

  • Kortesharju, J., Savonen, K., & Säynätkari, T. (1990). Element contents of raw humus, forest moss and reindeer lichens around a cement works in northern Finland. In Annales Botanici Fennici (pp. 221–230). The Finnish Botanical Publishing Board.

  • Le Blanc, F., & Rao, D. N. (1973). Effects of sulphur dioxide on lichen and moss transplants. Ecology, 54, 612–661.

    Google Scholar 

  • Loppi, S., Pirintsos, S. A., & De Dominicis, V. (1999). Soil contribution to the elemental composition of epiphytic lichens (Tuscany, central Italy). Environmental Monitoring and Assessment, 58(2), 121–131.

    CAS  Google Scholar 

  • Marié, D. C., Chaparro, M. A. E., Sinito, A. M., & Lavat, A. (2020). Magnetic biomonitoring of airborne particles using lichen transplants over controlled exposure periods. SN Applied Sciences, 2, 104. https://doi.org/10.1007/s42452-019-1905-2.

    Article  Google Scholar 

  • Nash III, T. H., & Gries, C. (1995). The use of lichens in atmospheric deposition studies with an emphasis on the Arctic. Science of the Total Environment, 160, 729–736.

    Google Scholar 

  • Nieboer, E., & Richardson, D. H. S. (1981). Lichens as monitors of atmospheric deposition. In S. J. Eisenreich (Ed.), Atmospheric pollutants in Natural Waters (pp. 339–388). Ann Arbor: Ann. Arbor Science Publications.

    Google Scholar 

  • Ohmura, Y., Kawachi, M., Kasai, F., Sugiura, H., Ohtara, K., Kon, Y., & Hamada, N. (2009). Morphology and chemistry of Parmotrema tinctorum (Parmeliaceae, lichenized Ascomycota) transplanted into sites with different air pollution levels. Bulletin of the National Museum of Nature and Science, Series B, 35, 91–98.

    Google Scholar 

  • Onianwa, P. C., & Ajayi, S. O. (1987). Heavy metal contents of epiphytic acrocarpous mosses within inhabited sites in Southwest Nigeria. Environment International, 13(2), 191–196.

    CAS  Google Scholar 

  • Rasmussen, P. E. (1998). Long-range atmospheric transport of trace metals: The need for geoscience perspectives. Environmental Geology, 33(2/3), 96–108.

    CAS  Google Scholar 

  • Reheis, M. C., & Kihl, R. (1995). Dust deposition in southern Nevada and California, 1984–1989: relations to climate, source area, and source lithology. Journal of Geophysical Research, 100(D5), 8893–8918.

    CAS  Google Scholar 

  • Rout, J., Singha, A. B., & Upreti, D. K. (2010). Pigment profile and chlorophyll degradation of Pyxine cocoes lichen: A comparative study of the different degree of disturbance in Cachar District, Assam. Assam University Journal of Science & Technology: Biological and. Environmental Sciences, 5, 85–88.

    Google Scholar 

  • Sadiq, M., Alam, I., El-Mubarek, A., & Al-Mohdar, H. M. (1989). Preliminary evaluation of metal pollution from wear of auto tires. Bulletin of Environmental Contamination and Toxicology, 42, 743–748.

    CAS  Google Scholar 

  • Scerbo, R., Ristori, T., Possenti, L., Lampugnani, L., Barale, R., & Barghigiani, C. (2002). Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air qualityassessment in Pisa Province (Tuscany, Italy). Science of the Total Environment, 286(1-3), 27–40.

    CAS  Google Scholar 

  • Spahić, M. M. P., Sakan, S. M., Glavaš-Trbić, B. M., Tančić, P. I., Škrivanj, S. B., Kovačević, J. R., & Manojlović, D. D. (2018). Natural and anthropogenic sources of chromium, nickel and cobalt in soils impacted by agricultural and industrial activity (Vojvodina, Serbia). Journal of Environmental Science and Health, Part A. https://doi.org/10.1080/10934529.2018.1544802.

  • Sugiyama, K., Kurokawa, S., & Okada, G. (1976). Studies of lichens as a bioindicator of air pollution. I. Correlation of distribution of Parmelia tinctorum with SO2 air pollution. Japanese. Journal of Ecology, 26, 209–212.

    CAS  Google Scholar 

  • Tuncel, S. G., & Karakas, S. Y. (2003). Elementals concentration in lichen in Western Anatolia. Water, Air, & Soil Pollution: Focus, 3, 97–107.

    CAS  Google Scholar 

  • Tyler, G. (1989). Uptake, retention and toxicity of heavy metals in lichens. A brief review. Water AirSoil Poll., 47, 321–333.

    CAS  Google Scholar 

  • Uluozlu, O. D., Kinalioglu, K., Tuzen, M., & Soylak, M. (2007). Trace metal levels in lichen samples from roadsides in East Black Sea region, Turkey. Biomedical and Environmental Sciences, 20(3), 203.

    CAS  Google Scholar 

  • Upreti, D. K., & Shukla, V. (2009). Effect of metallic pollutants on the physiology of lichen, Pyxinesubcinerea. Stirton in Garhwal Himalayas. Environmental Monitoring and Assessment, 141, 237–243.

    Google Scholar 

  • Vieira, B. J., Freitas, M. C., Rodrigues, A. F., Pacheco, A. M. G., Soares, P. M., & Correia, N. (2004). Element-enrichmentfactors in lichensfrom Terceira, Santa Maria and Madeira Islands (Azoresand Madeira archipelagoes). Journal of Atmospheric Chemistry, 49(1-3), 231–249.

    CAS  Google Scholar 

  • Walther, D. A., Ramelow, G. J., Beck, J. N., Young, J. C., Callahan, J. D., & Maroon, M. F. (1990). Temporal changes in metal levels of the lichens Parmotrema praesorediosum and Ramalina stenospora, southwest Louisiana. Water, Air, and Soil Pollution, 53(1-2), 189–200.

    CAS  Google Scholar 

  • Ward, N.I. (1989). Multi-element contamination of British motorway environments. In J.P. Vernet (Ed.), Heavy metals in the environment 2 (pp. 279–282). Proceedings of the International Conference, Geneva, September CEP Consultants, Edinburg.

Download references

Funding

The authors gratefully acknowledge the University Grants Commission (UGC), Government of India, for the Rajib Gandhi National Fellowship to Rebecca Daimari, and Tezpur University for providing SEM-EDX and ICP-OES facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raza R. Hoque.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daimari, R., Bhuyan, P., Hussain, S. et al. Anatomical, physiological, and chemical alterations in lichen (Parmotrema tinctorum (Nyl.) Hale) transplants due to air pollution in two cities of Brahmaputra Valley, India. Environ Monit Assess 193, 101 (2021). https://doi.org/10.1007/s10661-021-08897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08897-3

Keywords

Navigation