Skip to main content

Advertisement

Log in

C and P pool restoration by a no-tillage system on Brazilian Cerrado Oxisol in Piauí State

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Cerrado soil is under constant modification, especially because of the use of agricultural systems, which affect soil carbon (C) and phosphorus (P) functioning. Thus, the objective of this study was to determine the C and P dynamics in Brazilian Cerrado Oxisol in Piauí State under natural and anthropic conditions, considering that conservational agricultural management and no-tillage systems can restore the C and P pools in that soil. Four soil samples with distinct characteristics (native Cerrado, NC; burned native Cerrado, BNC; conventional tillage agricultural system, CTS; and no-tillage agricultural system, NTS) were collected in the study area for chemical and physical laboratory analysis. The total organic carbon (TOC) concentrations found were 33 g kg−1, 27 g kg−1, 26 g kg−1, and 20 g kg−1 for CTS, NTS, NC, and BNC, respectively. The NTS had a total nitrogen (TN) concentration of 2.0 g kg−1. The CTS had 33.4 g kg−1 of soil-oxidizable C, followed by the NTS with 27.2 g kg−1. In both studied layers, the NTS had an organic P concentration > 200 mg kg−1. The higher TOC concentration in the CTS was because of the higher content of clay in comparison with that in the NTS. The organic P in the NTS was associated with a less labile fraction of C. Thus, despite the disturbance caused by agricultural systems, the adoption of the NTS could be an influential strategy in agricultural systems to restore soil organic functioning in the Brazilian Cerrado Oxisol in Piauí State.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikari, G., & Bhattacharyya, K. G. (2015). Correlation of soil organic carbon and nutrients (NPK) to soil mineralogy, texture, aggregation, and land use pattern. Environmental Monitoring and Assessment, 187, 1–18. https://doi.org/10.1007/s10661-015-4932-5.

    Article  CAS  Google Scholar 

  • Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. (2017). A human-driven decline in global burned area. Science, 356, 1356–1362. https://doi.org/10.1126/science.aal4108.

    Article  CAS  Google Scholar 

  • Araújo, M. A., Zinn, Y. L., & Lal, R. (2017). Soil parent material, texture and oxide contents have little effect on soil organic carbon retention in tropical highlands. Geoderma. https://doi.org/10.1016/j.geoderma.2017.04.006.

  • Blair, G. J., Lefroy, R. D., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Crop & Pasture Science. https://doi.org/10.1071/AR9951459.

  • Bonetti, J. A., Anghinoni, I., Moraes, M. T., & Fink, J. R. (2017). Resilience of soils with different texture, mineralogy and organic matter under long-term conservation systems. Soil and Tillage Research. https://doi.org/10.1016/j.still.2017.06.008.

  • Bremner, J. M., & Mulvaney, C. S. (1982). Total nitrogen. In A. L. Page (Ed.), Methods of soil analysis (pp. 595–624). Madison: American Society of Agronomy.

    Google Scholar 

  • Chan, K. Y., Bowman, A., & Oates, A. (2001). Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys. Soil Science. https://doi.org/10.1097/00010694-200101000-00009.

  • Djodjic, F., & Bergström, L. (2005). Phosphorus losses from arable fields in Sweden—effects of field-specific factors and long-term trends. Environmental Monitoring and Assessment, 102, 103–117. https://doi.org/10.1007/s10661-005-2689-y.

    Article  CAS  Google Scholar 

  • Donagema, G. K., de Campos, D. V. B., Calderano, S. B., Teixeira, W. G., & Viana, J. H. M. (2011). Manual de métodos de análise de solo. Rio de Janeiro: Embrapa Solos.

    Google Scholar 

  • Eiten, G. A. (1990). A vegetação do Cerrado. In M. N. Pinto (Ed.), Cerrado: Caracterização, ocupação e perspectivas (pp. 9–65). Brasília: Universidade de Brasília.

    Google Scholar 

  • Ellert, B. H., & Bettany, J. R. (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science. https://doi.org/10.4141/cjss95-075.

  • Fontoura, S. M. V., & Bayer, C. (2006). Manejo e Fertilidade de Solos em Plantio Direto. Guarapuava: Fundação Agrária de Pesquisa Agropecuária.

    Google Scholar 

  • Gee, G. W., & Or, D. (2002). Particle-size analysis. In J. H. Dane & C. G. Topp (Eds.), Methods of soil analysis: Physical methods (pp. 255–293). Madison: Soil Science Society of America.

    Google Scholar 

  • Gmach, M. R., Dias, B. O., Silva, C. A., Nóbrega, J. C. A., Lustosa-Filho, J. F., & Siqueira-Neto, M. (2018). Soil organic matter dynamics and land-use change on Oxisols in the Cerrado, Brazil. Geoderma Regional. https://doi.org/10.1016/j.geodrs.2018.e00178.

  • Li, J., Wen, Y., Li, X., Li, Y., Yang, X., Lin, Z., Song, Z., Cooper, J. M., & Zhao, B. (2018). Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China plain. Soil and Tillage Research. https://doi.org/10.1016/j.still.2017.08.008.

  • Matias, M. D. C. B., Salviano, A. A. C., Leite, L. F. C., & Araújo, A. S. F. (2009). Biomassa microbiana e estoques de C e N do solo em diferentes sistemas de manejo, no cerrado do estado do Piauí. Acta Scientiarum Agronomy. https://doi.org/10.4025/actasciagron.v31i3.687.

  • Mehta, N. C., Legg, J. D., Goring, C. A. I., & Black, C. A. (1954). Determination of organic phosphorous in soil. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj1954.03615995001800040023x.

  • Miranda, H. S., Bustamante, M. M. C., & Miranda, A. C. (2002). The fire factor. In P. S. Oliveira & R. J. Marquis (Eds.), The cerrados of Brazil: Ecology and natural history of a neotropical savanna (pp. 51–68). New York: Columbia University Press.

    Chapter  Google Scholar 

  • MMA. (2014). PPCerrado –Plano de Ação para prevenção e controle do desmatamento e das queimadas no Cerrado: 2ª fase (2014–2015). Brasília: Ministério do Meio Ambiente.

    Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta. https://doi.org/10.1016/S0003-2670(00)88444-5.

  • Pellegrini, A. F. A., Ahlström, A., Hobbie, S. E., Reich, P. B., Nieradzik, L. P., Staver, C., Scharenbroch, B. C., Jumpponen, A., Anderegg, W. R. L., Randerson, J. T., & Jackson, R. B. (2018). Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature. https://doi.org/10.1038/nature24668.

  • Pfaltzgraff, P. A. S., Torres, F. S. M., & Brandão, R. L. (2010). Geodiversidade do Estado do Piauí. Recife: Companhia de Pesquisa de Recursos Minerais.

  • Pinheiro, É. F. M., de Campos, D. V. B., de Carvalho Balieiro, F., dos Anjos, L. H. C., & Pereira, M. G. (2015). Tillage systems effects on soil carbon stock and physical fractions of soil organic matter. Agricultural Systems. https://doi.org/10.1016/j.agsy.2014.08.008.

  • Pragana, R. B., Nóbrega, R. S. A., Ribeiro, M. R., & Lustosa Filho, J. F. (2012). Atributos biológicos e dinâmica da matéria orgânica em Latossolos Amarelos na região do Cerrado piauiense sob sistema plantio direto. Revista Brasileira de Ciência do Solo. https://doi.org/10.1590/S0100-06832012000300015.

  • Rabbi, S. M. F., Wilson, B. R., Lockwood, P. V., Daniel, H., & Young, I. M. (2014). Soil organic carbon mineralization rates in aggregates under contrasting land uses. Geoderma. https://doi.org/10.1016/j.geoderma.2013.10.023.

  • Raij, B. V. (1991). Fertilidade do solo e adubação. São Paulo, SP: Editora Agronômica Ceres.

    Google Scholar 

  • Requejo, M. I., & Eichler-Löbermann, B. (2014). Organic and inorganic phosphorus forms in soil as affected by long-term application of organic amendments. Nutrient Cycling in Agroecosystems. https://doi.org/10.1007/s10705-014-9642-9.

  • Richardson, A. E., & Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability. Update on microbial phosphorus. Plant Physiology. https://doi.org/10.1104/pp.111.175448.

  • Rizzini, C. T. (1963). A flora do cerrado, análise florística das savanas Centrais. In In: Simpósio sobre o Cerrado. São Paulo: Universidade de São Paulo/Edgaard Blücher.

    Google Scholar 

  • Rosolen, V., Resende, T. M., Borges, E. N., Frare, C. T., & Machado, H. A. (2012). Variações nos teores do C total e isotópico do solo após substituição do cerrado em sistemas agrícolas no Triângulo Mineiro. Revista Sociedade & Natureza. https://doi.org/10.1590/S1982-45132012000100013.

  • Rótolo, G. C., Montico, S., Francis, C. A., & Ulgiati, S. (2015). How land allocation and techology innovation affect the sustainability of agriculture in Argentina pampas: An expanded life cycle analysis? Agricultural Systems. https://doi.org/10.1016/j.agsy.2015.08.005.

  • Sağlam, M., Selvi, K. Ç., Dengiz, O., & Gürsoy, F. E. (2013). Affects of different tillage managements on soil physical quality in a clayey soil. Environmental Monitoring and Assessment, 187, 1–12. https://doi.org/10.1007/s10661-014-4185-8.

    Article  CAS  Google Scholar 

  • Salcedo, I. H., & Sampaio, E. V. S. B. (2008). Matéria orgânica do solo no bioma caatinga. In G. A. Santos, L. S. Silva, L. P. Canellas, & F. A. O. Camargo (Eds.), Fundamentos da matéria orgânica do solo: Ecossistemas tropicais e subtropicais (pp. 419–441). Porto Alegre: Metrópole.

    Google Scholar 

  • Santos, J. Z. L., Furtini Neto, A. E., Resende, Á. D., Curi, N., Carneiro, L. F., & Costa, S. D. A. (2008). Frações de fósforo em solo adubado com fosfatos em diferentes modos de aplicação e cultivado com milho. Revista Brasileira de Ciência do Solo. https://doi.org/10.1590/S0100-06832008000200025.

  • Santos, H. G., Jacomine, P. K. T., dos Anjos, L. H. C., Oliveira, V. A., Oliveira, J. B., Coelho, M. R., Lumbreras, J. F., & Cunha, T. J. F. (2013). Sistema brasileiro de classificação de solos. Brasilia: Embrapa Solos.

    Google Scholar 

  • Silva, I. R., & Mendonça, E. S. (2007). Materia orgânica do solo. In R. F. Novais, V. Alvarez, N. F. Barros, R. L. F. Fontes, R. B. Cantarutti, & J. C. L. Neves (Eds.), Ferlilidade do solo (pp. 275–374). Viçosa: Sociedade Brasileira de Ciência do Solo.

    Google Scholar 

  • Six, J., Paustian, K., Elliott, E. T., & Combrink, C. (2000). Soil structure and soil organic matter: I. Distribution of aggregate size classes and aggregate associated carbon. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj2000.642681x.

  • Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2009.03.016.

  • Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, and reactions. New York: Wiley.

    Google Scholar 

  • Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais. Porto Alegre: Universidade Federal do Rio Grande do Sul.

    Google Scholar 

  • Verma, B. C., Datta, S. P., Rattan, R. K., & Singh, A. K. (2010). Monitoring changes in soil organic carbon pools, nitrogen, phosphorus, and sulfur under different agricultural management practices in the tropics. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-009-1301-2.

  • Vezzani, F. M., & Mielniczuk, J. (2011). Agregação e estoque de carbono em Argissolo submetido a diferentes práticas de manejo agrícola. Revista Brasileira Ciência do Solo. https://doi.org/10.1590/S0100-06832011000100020.

  • Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis. https://doi.org/10.1080/00103628809368027.

Download references

Acknowledgments

This research project was supported by the Programa de Pós-Graduação em Ciências Agrárias of the Federal University of Piauí (PPGCA/UFPI) that provided the necessary infrastructure, and the Coordination of Improvement of Higher Level Personnel (CAPES), which provided scholarships to the first author in the social demand modality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronny Sobreira Barbosa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marafon, G., Barbosa, R.S., de Jesus Lacerda, J.J. et al. C and P pool restoration by a no-tillage system on Brazilian Cerrado Oxisol in Piauí State. Environ Monit Assess 192, 254 (2020). https://doi.org/10.1007/s10661-020-8221-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8221-6

Keywords

Navigation