Skip to main content
Log in

Non-invasive biomonitoring of mercury in birds near thermal power plants: lessons from Maharashtra, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Thermal power plants (TPPs) have emerged as a major source of air, water, and soil pollution because of the presence of many toxic metals. The presence of mercury (Hg) in fly ash has proven to be toxic in nature because of its tendency to get bioaccumulated and biomagnified in the food chain. The aim of the present study was to understand the presence of toxic Hg in the feathers of wetland birds undertaking the study around a TPP located in Nagpur, India. Local wetland birds especially cattle egrets, heron, and Moorhen were commonly observed dwelling close to fly ash ponds for various purposes (roosting, breeding, feeding, etc.). Samples of fly ash, soil, water, plants, and bird feather were collected, cleaned, and processed for Hg analysis. A mercury analyzer was used to assess the concentration of toxic levels of Hg in samples. Our results reflect leaching of Hg in soil and uptake by plant samples, whereas in water, ash, and bird feather samples concentrations of Hg were fairly below the prescribed limits (World Health Organization). A non-invasive method for understanding the mercury concentration in wetland birds has been established as a potential important monitoring tool to track the fate of toxic metal Hg in the food chain. In summary, our results indicate fairly low Hg levels in feather samples projecting non-invasive biomonitoring as a promising strategy. The study also suggests that a comprehensive monitoring action plan in place for Hg and other toxic metals in the food chain that comes from TPP will be efficient to avoid any pitfalls.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackerman, J. T., Eagles-Smith, C. A., Herzog, M. P., Hartman, C. A., Peterson, S. H., Evers, D. C., Jackson, A. K., Elliott, J. E., Vander Pol, S. S., & Bryan, C. E. (2016). Avian mercury exposure and toxicological risk across western North America: A synthesis. Science of the Total Environment, 568, 749–769.

    CAS  Google Scholar 

  • Ackerman, J. T., Hartman, C. A., & Herzog, M. P. (2019). Mercury contamination in resident and migrant songbirds and potential effects on body condition. Environmental Pollution, 246, l797–l810.

    Google Scholar 

  • Ahmadpour, M., Lan-Hai, L., Ahmadpour, M., Hoseini, S. H., Mashrofeh, A., & Binkowski, L. J. (2016). Mercury concentration in the feathers of birds from various trophic levels in Fereydunkenar international wetland (Iran). Environmental Monitoring and Assessment, 188(12), 666.

    Google Scholar 

  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019.

  • Anderson, K. A. (2006). Mercury analysis in environmental samples by cold vapor techniques. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. https://doi.org/10.1002/9780470027318.a0841.

  • Azevedo, R., & Rodriguez, E. (2012). Phytotoxicity of mercury in plants: A review. Journal of Botany, 2012.

  • Bai, Y., & Zhang, Z. (1989). The environment of soil and heavy metals. Agro-Environmental Protection, 8(3), 31–33.

    Google Scholar 

  • Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). In E. W. Rice (Ed.), Standard methods for the examination of water and wastewater (Vol. 10). Washington, DC, American Public Health Association.

  • Balasubramanian, A. (2017). Biodiversity profile of India. Technical Report-March 2017.

  • Barst, B. D., Hammerschmidt, C. R., Chumchal, M. M., Muir, D. C., Smith, J. D., Roberts, A. P., Rainwater, T. R., & Drevnick, P. E. (2013). Determination of mercury speciation in fish tissue with a direct mercury analyzer. Environmental Toxicology and Chemistry, 32(6), 1237–1241.

    CAS  Google Scholar 

  • Bassi, N., Kumar, M. D., Sharma, A., & Pardha-Saradhi, P. (2014). Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. Journal of Hydrology: Regional Studies, 2, 1–19.

    Google Scholar 

  • Becker, P. H., Goutner, V., Ryan, P. G., & González-Solís, J. (2016). Feather mercury concentrations in Southern Ocean seabirds: Variation by species, site and time. Environmental Pollution, 216, 253–263.

    CAS  Google Scholar 

  • Bhattacharyya, S. C. (1995). Thermal power generation and environment: A review of the Indian case. International Journal of Energy Research, 19(3), 185–198.

    CAS  Google Scholar 

  • BIS, I. (2012). 10500: 2012 Indian standard drinking water-specification (second revision). New Delhi: Bureau of Indian Standards (BIS).

    Google Scholar 

  • Boszke, L., Glosinska, G., & Siepak, J. (2002). Some aspects of speciation of mercury in a water environment. Polish Journal of Environmental Studies, 11(4).

  • Bourbour, R. P., Martinico, B. L., Ackerman, J. T., Herzog, M. P., Hull, A. C., Fish, A. M., & Hull, J. M. (2019). Feather mercury concentrations in North American raptors sampled at migration monitoring stations. Ecotoxicology, 28(4), 379–391.

    CAS  Google Scholar 

  • Bryan Jr., A. L., Hopkins, W. A., Parikh, J. H., Jackson, B. P., & Unrine, J. M. (2012). Coal fly ash basins as an attractive nuisance to birds: Parental provisioning exposes nestlings to harmful trace elements. Environmental Pollution, 161, 170–177.

    CAS  Google Scholar 

  • Burger, J. (1993). Metals in avian feathers: Bioindicators of environmental pollution. Reviews in Environmental Toxicology, 5, 203–311.

    Google Scholar 

  • CEA. (2015). Government of India, Ministry of Power, Central Electricity Authority, New Delhi, Executive summary on power sector, April 2015.

  • Chaitanya, V. (2007). Rapid economic growth and industrialization in India, China & Brazil: At what cost?.

  • Cheng, S. (2003). Heavy metals in plants and phytoremediation. Environmental Science and Pollution Research, 10(5), 335–340.

    CAS  Google Scholar 

  • Cheng, S., Grosse, W., Karrenbrock, F., & Thoennessen, M. (2002). Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecological Engineering, 18(3), 317–325.

    Google Scholar 

  • Chinchkhede, K. H., Kedar, G. T., & Chinchkhede, K. H. (2012). Avifaunal diversity of Koradi Lake in Nagpur District of Central India. Journal of Research in Biology, 2, 070–076.

    Google Scholar 

  • Chopra, A. K., & Pathak, C. (2015). Accumulation of heavy metals in the vegetables grown in wastewater irrigated areas of Dehradun, India with reference to human health risk. Environmental Monitoring and Assessment, 187(7), 445.

    CAS  Google Scholar 

  • Costa, R. A., Eeva, T., Eira, C., Vaqueiro, J., & Vingada, J. V. (2013). Assessing heavy metal pollution using Great Tits (Parus major): Feathers and excrements from nestlings and adults. Environmental Monitoring and Assessment, 185(6), 5339–5344.

    CAS  Google Scholar 

  • Cui, L., Feng, X., Lin, C. J., Wang, X., Meng, B., Wang, X., & Wang, H. (2014). Accumulation and translocation of 198Hg in four crop species. Environmental Toxicology and Chemistry, 33(2), 334–340.

    CAS  Google Scholar 

  • Dauwe, T., Bervoets, L., Blust, R., Pinxten, R., & Eens, M. (2000). Can excrement and feathers of nestling songbirds be used as biomonitors for heavy metal pollution? Archives of Environmental Contamination and Toxicology, 39(4), 541–546.

    CAS  Google Scholar 

  • Dhyani, S., Lahoti, S., Khare, S., Pujari, P., & Verma, P. (2018). Ecosystem based disaster risk reduction approaches (EbDRR) as a prerequisite for inclusive urban transformation of Nagpur City, India. International Journal of Disaster Risk Reduction, 32, 95–105.

    Google Scholar 

  • Drott, A., Lambertsson, L., Björn, E., & Skyllberg, U. (2007). Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology, 41(7), 2270–2276.

    CAS  Google Scholar 

  • Eagles-Smith, C. A., Ackerman, J. T., Adelsbach, T. L., Takekawa, J. Y., Miles, A. K., & Keister, R. A. (2008). Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA. Environmental Toxicology and Chemistry: An International Journal, 27(10), 2136–2153.

    CAS  Google Scholar 

  • Eens, M., Pinxten, R., Verheyen, R. F., Blust, R., & Bervoets, L. (1999). Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicology and Environmental Safety, 44(1), 81–85.

    CAS  Google Scholar 

  • Falkowska, L., Reindl, A. R., Szumiło, E., Kwaśniak, J., Staniszewska, M., Bełdowska, M., Lewandowska, A., & Krause, I. (2013). Mercury and chlorinated pesticides on the highest level of the food web as exemplified by herring from the Southern Baltic and African penguins from the zoo. Water, Air, & Soil Pollution, 224(5), 1549.

    Google Scholar 

  • FAO/WHO. (1999). Expert committee on food additives. In Summary and conclusions, 53rd meeting, Rome. 1–10.

  • Fernández, G., García-Hernández, J., Cruz-Acevedo, E., & Castillo-Guerrero, J. A. (2018). Patterns of mercury accumulation in tissues of Western sandpipers (Calidris mauri) wintering on the coast of Sinaloa, Mexico. Waterbirds, 41(4), 438–443.

    Google Scholar 

  • Frederick, P., & Jayasena, N. (2010). Altered pairing behaviour and reproductive success in white ibises exposed to environmentally relevant concentrations of methylmercury. Proceedings of the Royal Society B: Biological Sciences, 278(1713), 1851–1857.

    Google Scholar 

  • Garcia-Fernandez, A. J., Espín, S., & Martinez-Lopez, E. (2013). Feathers as a biomonitoring tool of polyhalogenated compounds: A review. Environmental Science & Technology, 47(7), 3028–3043.

    CAS  Google Scholar 

  • Gochfeld, M., & Burger, J. (1998). Temporal trends in metal levels in eggs of the endangered roseate tern (Sterna dougallii) in New York. Environmental Research, 77(1), 36–42.

    CAS  Google Scholar 

  • Goodarzi, F., Huggins, F. E., & Sanei, H. (2008). Assessment of elements, speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. International Journal of Coal Geology, 74(1), 1–12.

    CAS  Google Scholar 

  • Gottlieb, B., Gilbert, S. G., & Evans, L. G. (2010). Coal ash: The toxic threat to our health and environment. Report from Physicians for Social Responsibility and Earthjustice.

  • Gray, J. S. (2002). Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin, 45(1–12), 46–52.

    CAS  Google Scholar 

  • Gray, J. E., Theodorakos, P. M., Fey, D. L., & Krabbenhoft, D. P. (2015). Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environmental Geochemistry and Health, 37(1), 35–48.

    CAS  Google Scholar 

  • Hallinger, K. K., Zabransky, D. J., Kazmer, K. A., & Cristol, D. A. (2010). Birdsong differs between mercury-polluted and reference sites. The Auk, 127(1), 156–161.

    Google Scholar 

  • Hartman, C. A., Ackerman, J. T., Herzog, M. P., & Eagles-Smith, C. A. (2017). Season, molt, and body size influence mercury concentrations in grebes. Environmental Pollution, 229, 29–39.

    CAS  Google Scholar 

  • Hawley, D. M., Hallinger, K. K., & Cristol, D. A. (2009). Compromised immune competence in free-living tree swallows exposed to mercury. Ecotoxicology, 18(5), 499–503.

    CAS  Google Scholar 

  • Jakimska, A., Konieczka, P., Skóra, K., & Namieśnik, J. (2011). Bioaccumulation of metals in tissues of marine animals, part I: The role and impact of heavy metals on organisms. Polish Journal of Environmental Studies, 20(5).

  • Janssens, E., Dauwe, T., Bervoets, L., & Eens, M. (2002). Inter-and intraclutch variability in heavy metals in feathers of great tit nestlings (Parus major) along a pollution gradient. Archives of Environmental Contamination and Toxicology, 43(3), 0323–0329.

    CAS  Google Scholar 

  • Jaspers, V. L., Covaci, A., Herzke, D., Eulaers, I., & Eens, M. (2019). Bird feathers as a biomonitor for environmental pollutants: Prospects and pitfalls. TrAC Trends in Analytical Chemistry, 118, 223–226.

    CAS  Google Scholar 

  • Javed, H., & Javed, M. (2013). Mercury concentrations in environment: A cause of concern for human health. International Journal Of Biology and Biological Sciences, 2(1), 114–121.

    Google Scholar 

  • Javed, M., & Usmani, N. (2015). Stress response of biomolecules (carbohydrate, protein and lipid profiles) in fish Channa punctatus inhabiting river polluted by thermal power plant effluent. Saudi Journal Biological Sciences, 22(2), 237–242.

    CAS  Google Scholar 

  • Kakde, U. B., & Sitre, S. R. (2015). Effect of thermal power station effluents on wetland ecosystem. International Journal of Researches in Biosciences, Agriculture and Technology, 2(7), 252–259.

    Google Scholar 

  • Kasambe, R., & Sani, T. (2009). Avifauna in and around Nagpur city of Maharashtra-an annotated, authentic, contemporary checklist. Newsletter for Birdwatchers, 49(3), 35–40.

    Google Scholar 

  • Kobiela, M. E., Cristol, D. A., & Swaddle, J. P. (2015). Risk-taking behaviours in zebra finches affected by mercury exposure. Animal Behaviour, 103, 153–160.

    Google Scholar 

  • Koli, V. K. (2014). Diversity and status of avifauna in Todgarh-Raoli Wildlife Sanctuary, Rajasthan, India. Journal of Asia-Pacific Biodiversity, 7(4), 401–407.

    Google Scholar 

  • Kukade, R. J., Warhekar, S. R., Tippat, S. K., & Dudhey, N. S. (2011). Avifaunal diversity of Chhatri lake, Amravati, Maharashtra. In Proceedings of UGC sponsored National level conference on “Environmental Biology and Biodiversity” NCEBB.

  • Kumar, S., Katoria, D., & Sehgal, D. (2013). Environment impact assessment of thermal power plant for sustainable development. International Journal of Environmental Engineering and Management, 4(6), 567–572.

    Google Scholar 

  • Lavoie, R. A., Kyser, T. K., Friesen, V. L., & Campbell, L. M. (2014). Tracking overwintering areas of fish-eating birds to identify mercury exposure. Environmental Science & Technology, 49(2), 863–872.

    Google Scholar 

  • Lee, J., Lee, S. Y., Chung, D., Park, K. W., Shim, K., Lee, J., & Park, J. H. (2020). Utilization of black-tailed gull (Larus crassirostris) eggs for monitoring of mercury levels in coastal areas of South Korea: Preliminary study. Science of the Total Environment 136578.

  • Leonzio, C., Bianchi, N., Gustin, M., Sorace, A., & Ancora, S. (2009). Mercury, lead and copper in feathers and excreta of small passerine species in relation to foraging guilds and age of feathers. Bulletin of Environmental Contamination and Toxicology, 83(5), 693.

    CAS  Google Scholar 

  • Lepp, N. W. (Ed.). (2012). Effect of heavy metal pollution on plants: metals in the environment (Vol. 2). Berlin: Springer Science & Business Media.

    Google Scholar 

  • Lyver, P. O. B., Aldridge, S. P., Gormley, A. M., Gaw, S., Webb, S., Buxton, R. T., & Jones, C. J. (2017). Elevated mercury concentrations in the feathers of grey-faced petrels (Pterodroma gouldi) in New Zealand. Marine Pollution Bulletin, 119(1), 195–203.

    CAS  Google Scholar 

  • Mahajan, V. E., Yadav, R. R., Dakshinkar, N. P., Dhoot, V. M., Bhojane, G. R., Naik, M. K., Shrivastava, P., Naoghare, P. K., & Krishnamurthi, K. (2012). Influence of mercury from fly ash on cattle reared nearby thermal power plant. Environmental Monitoring and Assessment, 184(12), 7365–7372.

    CAS  Google Scholar 

  • Majidi, Y., Bahramifar, N., & Ghasempouri, S. M. (2015). Pattern of mercury accumulation in different tissues of migratory and resident birds: Western reef heron (Egretta gularis) and Siberian gull (Larus heuglini) in Hara International Wetland—Persian Gulf. Environmental Monitoring and Assessment, 187(1), 4082.

    Google Scholar 

  • Mallory, M. L., & Braune, B. M. (2012). Tracking contaminants in seabirds of Arctic Canada: Temporal and spatial insights. Marine Pollution Bulletin, 64(7), 1475–1484.

    CAS  Google Scholar 

  • Mallory, M. L., Braune, B. M., Provencher, J. F., Callaghan, D. B., Gilchrist, H. G., Edmonds, S. T., Allard, K., & O’Driscoll, N. J. (2015). Mercury concentrations in feathers of marine birds in Arctic Canada. Marine Pollution Bulletin, 98(1–2), 308–313.

    CAS  Google Scholar 

  • Mandal, A., & Sengupta, D. (2002). Characterization of flyash from coal-based thermal power station at Kolaghat-possible environmental hazards. Indian Journal of Environmental Protection, 22(8), 885–891.

    CAS  Google Scholar 

  • Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy Metals; IntechOpen: Aglan, France, (pp. 115-133).

  • Melendez-Perez, J. J., & Fostier, A. H. (2013). Assessment of Direct Mercury Analyzer® to quantify mercury in soils and leaf samples. Journal of the Brazilian Chemical Society, 24(11), 1880–1886.

    Google Scholar 

  • Meyer, C. B., Schlekat, T. H., Walls, S. J., Iannuzzi, J., & Souza, M. J. (2015). Evaluating risks to wildlife from coal fly ash incorporating recent advances in metals and metalloids risk assessment. Integrated Environmental Assessment and Management, 11(1), 67–79.

    CAS  Google Scholar 

  • Mishra, U. C. (2004). Environmental impact of coal industry and thermal power plants in India. Journal of Environmental Radioactivity, 72(1–2), 35–40.

    CAS  Google Scholar 

  • Monteiro, L. R., & Furness, R. W. (1995). Seabirds as monitors of mercury in the marine environment. In Mercury as a Global Pollutant (pp. 851–870). Dordrecht: Springer.

    Google Scholar 

  • Moore, C. S., Cristol, D. A., Maddux, S. L., Varian-Ramos, C. W., & Bradley, E. L. (2014). Lifelong exposure to methylmercury disrupts stress-induced corticosterone response in zebra finches (Taeniopygia guttata). Environmental Toxicology and Chemistry, 33(5), 1072–1076.

    CAS  Google Scholar 

  • Ochoa-Acuna, H., Sepúlveda, M. S., & Gross, T. S. (2002). Mercury in feathers from Chilean birds: Influence of location, feeding strategy, and taxonomic affiliation. Marine Pollution Bulletin, 44(4), 340–345.

    CAS  Google Scholar 

  • Patra, M., & Sharma, A. (2000). Mercury toxicity in plants. The Botanical Review, 66(3), 379–422.

    Google Scholar 

  • Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52(3), 199–223.

    CAS  Google Scholar 

  • Provencher, J. F., Mallory, M. L., Braune, B. M., Forbes, M. R., & Gilchrist, H. G. (2014). Mercury and marine birds in Arctic Canada: Effects, current trends, and why we should be paying closer attention. Environmental Reviews, 22(3), 244–255.

    CAS  Google Scholar 

  • Puri, S. D., & Virani, R. S. (2016). Avifaunal diversity from Khairbandha Lake in Gondia District, Maharashtra State, India. Bioscience Discovery, 7(2), 140–146.

    Google Scholar 

  • Rafati, M., Khorasani, N., Moattar, F., Shirvany, A., Moraghebi, F., & Hosseinzadeh, S. (2011). Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. International Journal of Environmental Research, 5(4), 961–970.

    CAS  Google Scholar 

  • Rai, V. K., Raman, N. S., & Choudhary, S. K. (2013). Mercury in thermal power plants–a case study. International Journal of Pure & Applied Bioscience, 1(2), 31–37.

    Google Scholar 

  • Raja, R., Nayak, A. K., Shukla, A. K., Rao, K. S., Gautam, P., Lal, B., Tripathi, R., Shahid, M., Panda, B. B., Kumar, A., Bhattacharyya, P., Bardhan, G., Gupta, S., & Patra, D. K. (2015). Impairment of soil health due to fly ash-fugitive dust deposition from coal-fired thermal power plants. Environmental Monitoring and Assessment, 187(11), 679.

    CAS  Google Scholar 

  • Ramachandra, T. V., Ramakrishna, Y. B., Krishnadas, G., Sudarshan Bhat, P., Mahapatra, D. M., & Bharath Aithal, H. (2012). Environmental profile and people’s livelihood aspects in the vicinity of coal based thermal power plant at Yellur Panchayat, Udupi District. In CES Technical Report: 126, Energy & Wetlands Research Group, Centre for Ecological Sciences. Bangalore: Indian Institute of Science.

    Google Scholar 

  • Renedo, M., Bustamante, P., Tessier, E., Pedrero, Z., Cherel, Y., & Amouroux, D. (2017). Assessment of mercury speciation in feathers using species-specific isotope dilution analysis. Talanta, 174, 100–110.

    CAS  Google Scholar 

  • Rutkowska, M., Płotka-Wasylka, J., Lubinska-Szczygeł, M., Różańska, A., Możejko-Ciesielska, J., & Namieśnik, J. (2018). Birds’ feathers–suitable samples for determination of environmental pollutants. TrAC Trends in Analytical Chemistry, 109, 97–115.

    CAS  Google Scholar 

  • Schwartz, G. E., Redfern, L. K., Ikuma, K., Gunsch, C. K., Ruhl, L. S., Vengosh, A., & Hsu-Kim, H. (2016). Impacts of coal ash on methylmercury production and the methylating microbial community in anaerobic sediment slurries. Environmental Science: Processes & Impacts, 18(11), 1427–1439.

    CAS  Google Scholar 

  • Sekara, A., Poniedzialeek, M., Ciura, J., & Jedrszczyk, E. (2005). Cadmium and lead accumulation and distribution in the organs of nine crops: Implications for phytoremediation. Polish Journal of Environmental Studies, 14(4), 509–516.

    CAS  Google Scholar 

  • Sharma, B. M., Bharat, G. K., Sebkova, K., & Scheringer, M. (2019). Implementation of the Minamata Convention to manage mercury pollution in India: Challenges and opportunities. Environmental Sciences Europe, 31(1), 96.

    CAS  Google Scholar 

  • Shivpuri, K. K., Lokeshappa, B., Kulkarni, D. A., & Dikshit, A. K. (2011). Metal leaching potential in coal fly ash. American Journal of Environmental Engineering, 1(1), 21–27.

    Google Scholar 

  • Spadoni, M., Voltaggio, M., Sacchi, E., Sanam, R., Pujari, P. R., Padmakar, C., Labhasetwar, P. K., & Wate, S. R. (2014). Impact of the disposal and re-use of fly ash on water quality: The case of the Koradi and Khaperkheda thermal power plants (Maharashtra, India). Science of the Total Environment, 479, 159–170.

    Google Scholar 

  • Stenhouse, I. J., Adams, E. M., Goyette, J. L., Regan, K. J., Goodale, M. W., & Evers, D. C. (2018). Changes in mercury exposure of marine birds breeding in the Gulf of Maine, 2008–2013. Marine Pollution Bulletin, 128, 156–161.

    CAS  Google Scholar 

  • Strekopytov, S., Brownscombe, W., Lapinee, C., Sykes, D., Spratt, J., Jeffries, T. E., & Jones, C. G. (2017). Arsenic and mercury in bird feathers: Identification and quantification of inorganic pesticide residues in natural history collections using multiple analytical and imaging techniques. Microchemical Journal, 130, 301–309.

    CAS  Google Scholar 

  • Theis, T. L., Westrick, J. D., Hsu, C. L., & Marley, J. J. (1978). Field investigation of trace metals in groundwater from fly ash disposal. Journal - Water Pollution Control Federation, 2457–2469.

  • Tiwari, M. K., Bajpai, S., Dewangan, U. K., & Tamrakar, R. K. (2015). Assessment of heavy metal concentrations in surface water sources in an industrial region of central India. Karbala International Journal of Modern Science, 1(1), 9–14.

    Google Scholar 

  • UNEP, Ⱦ. (2013). Global mercury assessment 2013: Sources. Geneva: Emissions, Releases and Environmental Transport, United Nations Environment Programme Chemicals Branch.

    Google Scholar 

  • USEPA. (1995). National recommended water quality criteria, United States environmental protection agency, http:/www.epa.gov/ost/criteria/wqctable/, Accessed 11 June 2013.

  • Vasistha, V. (2014). Effects of pollutants produced by thermal power plant on environment: A review. International Journal of Mechanical Engineering and Robotics Research, 3(2), 202–207.

    Google Scholar 

  • Verma, C., Madan, S., & Hussain, A. (2016). Heavy metal contamination of groundwater due to fly ash disposal of coal-fired thermal power plant, Parichha, Jhansi, India. Cogent Engineering, 3(1), 1179243.

    Google Scholar 

  • Vishwanathan, S., Garg, A., & Tiwari, V. (2018). Coal transition in India: Assessing India’s energy transition options. IDDRI and Climate Strategies, 54.

  • VV.AA. (2008). Environmental audit and due diligence assessment. For R&M of 210MW, Unit 6 at Koradi Thermal Power Station. Ernst & Young; (210 pp.).

  • Wang, Y., Shi, L., Chiang, P. C., Mou, X. F., & Liang, H. J. (2016). Emission and species distribution of mercury during thermal treatment of coal fly ash. Aerosol and Air Quality Research, 16, 1701–1712.

    CAS  Google Scholar 

  • Wanjari, P. D. (2012). Avifaunal diversity of Nagpur City, MS, India. Bionano Frontier, 5, 124–126.

    Google Scholar 

  • WHO. (2005). Mercury in Drinking-water. (Vol. WHO/SDE/WSH/05.08/10): World Health Organization, Geneva.

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2–3), 456–464.

    CAS  Google Scholar 

  • Zabala, J., Rodriguez-Jorquera, I. A., Orzechowski, S. C., & Frederick, P. (2019). Non-lethal sampling of avian indicators reveals reliable geographic signals of mercury despite highly dynamic patterns of exposure in a large wetland. Environmental Pollution, 247, 577–585.

    CAS  Google Scholar 

  • Zhao, S., Duan, Y., Lu, J., Gupta, R., Pudasainee, D., Liu, S., et al. (2018). Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants. Fuel, 232, 463–469.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank two anonymous reviewers who have helped in improving the manuscript substantially. Knowledge Resource Centre (CSIR-NEERI) is acknowledged for approving the manuscript under the number CSIR-NEERI/KRC/2019/OCT/WTMD-AID/1 for plagiarism check.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Dhyani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Table 1 List of some avifaunal species in and around Koradi Lake

Appendix 2

Fig. 9
figure 9

Bird feather samples collected from study area

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Dhyani, S., Bramhanwade, K. et al. Non-invasive biomonitoring of mercury in birds near thermal power plants: lessons from Maharashtra, India. Environ Monit Assess 192, 260 (2020). https://doi.org/10.1007/s10661-020-8215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8215-4

Keywords

Navigation