Modelling Agriculture, Forestry and Other Land Use (AFOLU) in response to climate change scenarios for the SAARC nations


Agriculture and forestry are the two major land use classes providing sustenance to the human population. With the pace of development, these two land use classes continue to change over time. Land use change is a dynamic process under the influence of multiple drivers including climate change. Therefore, tracing the trajectory of the changes is challenging. The artificial neural network (ANN) has successfully been applied for tracing such a dynamic process to capture nonlinear responses. We test the application of the multilayer perceptron neural network (MLP-NN) to project the future Agriculture, Forestry and Other Land Use (AFOLU) for the year 2050 for the South Asian Association for Regional Cooperation (SAARC) nations which is a geopolitical union of Afghanistan, Bangladesh, Bhutan, India, Nepal, Maldives, Pakistan and Sri Lanka. The Intergovernmental Panel on Climate Change (IPCC) and Food and Agriculture Organization (FAO) use much frequently the term ‘AFOLU’ in their policy documents. Hence, we restricted our land use classification scheme as AFOLU for assessing the influence of climate change scenarios of the IPCC fifth assessment report (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5). Agricultural land would increase in all the SAARC nations, with the highest increase in Pakistan and Maldives; moderate increase in Afghanistan, India and Nepal; and the least increase in Bangladesh, Bhutan and Sri Lanka. The forestry land use will witness a decreasing trend under all scenarios in all of the SAARC nations with varying levels of changes. The study is expected to assist planners and policymakers to develop nations’ specific strategy to proportionate land use classes to meet various needs on a sustainable basis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Al-Amin, A. Q., & Ahmed, F. (2016). Food security challenge of climate change: an analysis for policy selection. Futures, 83(2015), 50–63.

    Article  Google Scholar 

  2. Alam, A., Rashid, S. M., Bhat, M. S., & Sheikh, A. H. (2011). Impact of land use / land cover dynamics on himalayan wetland ecosystem. Journal of Experimental Sciences, 2(3), 60–64.

  3. Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050. Land Use Policy.

  4. Arndt, C., & Bacou, M. (2000). Economy-wide effects of climate variability and climate prediction in Mozambique. American Journal of Agricultural Economics.

  5. Atkinson, P. M., & Tatnall, A. R. L. (1997). Introduction neural networks in remote sensing. International Journal of Remote Sensing, 18(4), 699–709.

    Article  Google Scholar 

  6. Bagheri Bodaghabadi, M., MartÍnez-Casasnovas, J., Salehi, M. H., Mohammadi, J., Esfandiarpoor Borujeni, I., Toomanian, N., & Gandomkar, A. (2015). Digital soil mapping using artificial neural networks and terrain-related attributes. Pedosphere, 25(4), 580–591.

  7. Bawa, K. S., & Seidler, R. (2015). Deforestation and sustainable mixed-use landscapes: A view from the Eastern Himalaya 1. Annals of the Missouri Botanical Garden.

  8. Bishop, C. M. (2006). Pattern recognition and machine learning. M. Jordan, J. Kleinberg, & B. Schölkopf (Eds.), Pattern recognition (Vol. 4, p. 738). Springer.

  9. Bontemps, S., Defourny, P., Van Bogaert, E., Herold, M., Kooistra, L., Kalogirou, V., & Arino, O. (2011). Producing global land cover maps consistent over time to respond the needs of the climate modelling community. In Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), 2011 6th International Workshop on the (pp. 161–164).

  10. Calzadilla, A., Rehdanz, K., Betts, R., Falloon, P., Wiltshire, A., & Tol, R. S. J. (2013). Climate change impacts on global agriculture. Climatic Change, 120(1–2), 357–374.

    Article  Google Scholar 

  11. Chand, R. (2010). SAARC agricultural vision 2020. Agricultural Economics Research Review, 23(2)(December), 197–208.

  12. Civco, D. L. (1993). Artificial neural networks for land-cover classification and mapping. International Journal of Geographical Information Systems, 7(2), 173–186.

  13. Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (Northern Calabria, Italy). Catena, 113, 236–250.

  14. Connolly-Boutin, L., & Smit, B. (2016). Climate change, food security, and livelihoods in sub-Saharan Africa. Regional Environmental Change. Springer Berlin Heidelberg.

  15. Costanza, R., d’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1998). The value of ecosystem services: putting the issues in perspective. Ecological Economics, 25(1), 67–72.

    Article  Google Scholar 

  16. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). Classifying drivers of global forest loss. Science, 1111(September), 1108–1111.

    Article  Google Scholar 

  17. Debella-Gilo, M., & Etzelmüller, B. (2009). Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: examples from Vestfold County, Norway. Catena, 77(1), 8–18.

    Article  Google Scholar 

  18. Defries, R. S., Bounoua, L., & Collatz, G. J. (2002). Human modification of the landscape and surface climate in the next fifty years. Global Change Biology, 8(5), 438–458.

    Article  Google Scholar 

  19. DNA. (2017). SAARC satellite. DNA. .

  20. Eastman, J. R. (2015). TerrSet manual. Clark University, 53(9), 392.

  21. FAO. (2011). The state of the world’s land and water resources for food and agriculture. Managing systems at risk. The Food and Agriculture Organization of the United Nations and Earthscan.

  22. FAO. (2014). Global Land Cover SHARE (GLC-SHARE) database beta-release version 1.0. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO)

  23. Fausett, L. (2017). Fundamentals of neural network architectures, algorithms, and applications. Inc., New Jersey; Pearson Education.

  24. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology.

  25. Food and Agriculture Organisation (FAO). (2010). Global forest resources assessment 2010 - main report. FAO Forestry Paper 163.

  26. Geneletti, D. (2013). Assessing the impact of alternative land-use zoning policies on future ecosystem services. Environmental Impact Assessment Review, 40(1), 25–35.

  27. Ghosh, S., & Chifos, C. (2017). The 1985 siting of a Toyota manufacturing plant in rural Kentucky, USA: the ensuing land use change and implications for planning. Landscape and Urban Planning, 167(November 2015), 288–301.

    Article  Google Scholar 

  28. Haile, M. (2005). Weather patterns, food security and humanitarian response in sub-Saharan Africa. In philosophical transactions of the royal society B: Biological Sciences.

  29. Hansen, A. J., Neilson, R. P., Dale, V. H., Flather, C. H., Iverson, L. R., Currie, D. J., et al. (2001). Global change in forests: responses of species, communities, and biomes: interactions between climate change and land use are projected to cause large shifts in biodiversity. BioScience, 51(9), 765–779.[0765:GCIFRO]2.0.CO;2.

  30. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., & Tyukavina, A. (2013). High-resolution global maps of 134 (November), 850–854.

  31. Henderson-Sellers, A., & McGuffie, K. (1987). Evaluating observations of oceanic cloudiness. NERC News, October, 1987s, 22–24.

  32. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.

    Article  Google Scholar 

  33. Houghton, J. T., Jenkins, G. J., & Ephraums, J. J. (1990). Climate change: the IPCC scientific assessment. IPCC (Vol. 1).

  34. IPCC. (2006). Agriculture, forestry and other land use (AFOLU). Forestry (Vol. 4). Accessed 1 July 2019.

  35. IPCC. (2007). Climate Change 2007: Impacts, adaptation and vulnerability: Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel. Suíça:Genebra.

  36. Jain, P., Ahmed, R., & Sajjad, H. (2016). Assessing and monitoring forest health using a forest fragmentation approach in Sariska Tiger Reserve, India. Norsk Geografisk Tidsskrift, 70(5), 306–315.

    Article  Google Scholar 

  37. Kalra, N., & Kumar, M. (2019). Simulating the impact of climate change and its variability on agriculture. In S. Sheraz Mahdi (Ed.), Climate change and agriculture in India: impact and adaptation (pp. 21–28). Cham: Springer International Publishing.

    Google Scholar 

  38. Kumar, M., Padalia, H., Nandy, S., Singh, H., Khaiter, P., & Kalra, N. (2019a). Does spatial heterogeneity of landscape explain the process of plant invasion? A case study of Hyptis suaveolens from Indian Western Himalaya. Environmental Monitoring and Assessment, 191(3 Supplement), 794–717.

    Article  Google Scholar 

  39. Kumar, M., Rawat, S. P. S., Singh, H., Ravindranath, N. H., & Kalra, N. (2018a). Dynamic forest vegetation models for predicting impacts of climate change on forests: an Indian perspective. Indian Journal of Forestry, 41(1), 1–12.

    Google Scholar 

  40. Kumar, M., Savita, & Kushwaha, S. (2020). Managing the forest fringes of India: a national perspective for meeting sustainable development goals. In Sustainability perspectives: science, policy and practice (pp. 331–347). Switzerland: Springer Nature.

    Google Scholar 

  41. Kumar, M., Savita, Singh, H., Pandey, R., Singh, M. P., Ravindranath, N. H., & Kalra, N. (2019b). Assessing vulnerability of forest ecosystem in the Indian Western Himalayan region using trends of net primary productivity. Biodiversity and Conservation, 28(8–9), 2163–2182.

    Article  Google Scholar 

  42. Kumar, M., Singh, H., Pandey, R., Singh, M. P., Ravindranath, N. H., & Kalra, N. (2018b). Assessing vulnerability of forest ecosystem in the Indian Western Himalayan region using trends of net primary productivity. Biodiversity and Conservation, 1–20.

  43. Lahsen, M., Sanchez-Rodriguez, R., Lankao, P. R., Dube, P., Leemans, R., Gaffney, O., et al. (2010). Impacts, adaptation and vulnerability to global environmental change: challenges and pathways for an action-oriented research agenda for middle-income and low-income countries. Current Opinion in Environmental Sustainability, 2(5–6), 364–374.

    Article  Google Scholar 

  44. Liverman, D., & Kapadia, K. (2012). Food systems and the global environment: An overview. In Food Security and Global Environmental Change.

  45. Mellert, K. H., Deffner, V., Küchenhoff, H., & Kölling, C. (2015). Modeling sensitivity to climate change and estimating the uncertainty of its impact: a probabilistic concept for risk assessment in forestry. Ecological Modelling, 316, 211–216.

    Article  Google Scholar 

  46. Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Sayre, R., Trabucco, A., & Zomer, R. (2013). A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecology and Biogeography, 22(5), 630–638.

    Article  Google Scholar 

  47. Mishra, V. N., Rai, P. K., & Mohan, K. (2014). Original scientific paper, 64(1), 111–127.

  48. Mozumder, C., & Tripathi, N. K. (2014). Geospatial scenario based modelling of urban and agricultural intrusions in Ramsar wetland deepor beel in northeast India using a multi-layer perceptron neural network. International Journal of Applied Earth Observation and Geoinformation, 32(1), 92–104.

    Article  Google Scholar 

  49. Muchoney, D., Borak, J., Chi, H., Friedl, M., Gopal, S., Hodges, J., et al. (2000). Application of the MODIS global supervised classification model to vegetation and land cover mapping of Central America. International Journal of Remote Sensing, 21(6–7), 1115–1138.

    Article  Google Scholar 

  50. National, D., & Region, P. (2010). Forecasting areas vulnerable to forest conversion in the Tam Dao National Park Region, Vietnam, 1249–1272.

  51. Nelson, G., Rosegrant, M., Koo, J., Robertson, R., Sulser, T., Zhu, T., et al. (2009). Climate change impact on agriculture and costs of adaptation (pp. 33–43). Washington, D.C: International Food Policy Research Institute.

  52. O’Donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S Geological Survey Data Series 691, 10.

  53. Pathirana, A., Denekew, H. B., Veerbeek, W., Zevenbergen, C., & Banda, A. T. (2014). Impact of urban growth-driven landuse change on microclimate and extreme precipitation - a sensitivity study. Atmospheric Research, 138, 59–72.

    Article  Google Scholar 

  54. Paul, C., Weber, M., & Knoke, T. (2017). Agroforestry versus farm mosaic systems – comparing land-use efficiency, economic returns and risks under climate change effects. Science of the Total Environment, 587–588, 22–35.

    CAS  Article  Google Scholar 

  55. Pérez-Vega, A., Mas, J. F., & Ligmann-Zielinska, A. (2012). Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environmental Modelling and Software, 29(1), 11–23.

    Article  Google Scholar 

  56. Pokhriyal, P., Rehman, S., Krishna, G. A., Rajiv, R., & Manoj, P. (2020). Assessing forest cover vulnerability in Uttarakhand, India using analytical hierarchy process. Modeling Earth Systems and Environment., 1–11.

  57. Pontius, R. G., Huffaker, D., & Denman, K. (2004). Useful techniques of validation for spatially explicit land-change models. Ecological Modelling, 179(4), 445–461.

    Article  Google Scholar 

  58. Pontius, R. G., & Si, K. (2014). The total operating characteristic to measure diagnostic ability for multiple thresholds. International Journal of Geographical Information Science, 28(3), 570–583.

    Article  Google Scholar 

  59. Qin, Y., Xiao, X., Dong, J., Zhang, G., Roy, P. S., Joshi, P. K., et al. (2016). Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010. Nature Publishing Group, (January), 1–10.

  60. Ravindranath, N. H., Joshi, N. V., Sukumar, R., & Saxena, A. (2006). Impact of climate change on forests in India. Current Science, 354–361.

  61. Rose, S. K., Ahammad, H., Eickhout, B., Fisher, B., Kurosawa, A., Rao, S., et al. (2012). Land-based mitigation in climate stabilization. Energy Economics.

  62. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature.

  63. Saeidi, S., Mohammadzadeh, M., Salmanmahiny, A., & Mirkarimi, S. H. (2017). Performance evaluation of multiple methods for landscape aesthetic suitability mapping: a comparative study between multi-criteria evaluation, logistic regression and multi-layer perceptron neural network. Land Use Policy, 67(May), 1–12.

    Article  Google Scholar 

  64. Sahana, M., Ahmed, R., Jain, P., & Sajjad, H. (2016). Driving force for forest fragmentation explored by land use change in Song watershed, India. Spatial Information Research, 24(6), 659–669.

    Article  Google Scholar 

  65. Sahana, M., Hong, H., Sajjad, H., Liu, J., & Zhu, A. X. (2018). Assessing deforestation susceptibility to forest ecosystem in Rudraprayag district, India using fragmentation approach and frequency ratio model. Science of the Total Environment, 627, 1264–1275.

    CAS  Article  Google Scholar 

  66. Sajjad, H., Nasreen, I., & Ansari, S. A. (2014). Assessing spatiotemporal variation in agricultural sustainability using sustainable livelihood security index: empirical illustration from Vaishali district of Bihar, India. Agroecology and Sustainable Food Systems, 38(1), 46–68.

    Article  Google Scholar 

  67. Savita, Kumar, M., & Kushwaha, S. (2018). Forest resource dependence and ecological assessment of forest fringes in rainfed districts of India. Indian Forester, 144(3), 211–220.

    Google Scholar 

  68. Seto, K. C., & Kaufmann, R. K. (2005). Using logit models to classify land cover and land-cover change from Landsat Thematic Mapper. International Journal of Remote Sensing, 26(3), 563–577.

    Article  Google Scholar 

  69. Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78–87.

    Article  Google Scholar 

  70. Stéphenne, N., & Lambin, E. F. (2001). A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU). 85, 145–161.

  71. Thapa, R. B., & Murayama, Y. (2012). Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landscape and Urban Planning, 105(1–2), 140–148.

  72. Tubiello, F. N., Salvatore, M., Cóndor Golec, R. D., Ferrara, A., Rossi, S., Biancalani, R., et al. (2014). Agriculture, forestry and other land use emissions by sources and removals by sinks. ESS Working Paper No.2, 2, 4–89.

  73. Turner, B. (2014). Asian Development Bank Institute., Asian Development Bank Institute.

  74. Uddin, K., Chaudhary, S., Chettri, N., Kotru, R., Murthy, M., Prasad, R., et al. (2015). Landscape and urban planning the changing land cover and fragmenting forest on the roof of the world: A case study in Nepal’s kailash sacred landscape. Landscape and Urban Planning, 141, 1–10.

  75. van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: an overview. Climatic Change, 109(1), 5–31.

    Article  Google Scholar 

  76. Vermeulen, S. J., Aggarwal, P. K., Ainslie, A., Angelone, C., Campbell, B. M., Challinor, A. J., et al. (2012). Options for support to agriculture and food security under climate change. Environmental Science and Policy, 15(1), 136–144.

  77. White, B. W., & Rosenblatt, F. (1963). Principles of neurodynamics: perceptrons and the theory of brain mechanisms. The American Journal of Psychology.

  78. Yasmine Megahed, Pedro Cabral, Joel Silva and Mário Caetano. (2015). Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region—Egypt. ISPRS International Journal of Geo-Information, 1750–1769.

  79. Zhang, J., Sun, J., Ma, B., & Du, W. (2017). Assessing the ecological vulnerability of the upper reaches of the Minjiang River. PLoS One, 12(7), e0181825.

Download references


The authors acknowledge and thank Vasudeva Rao (Deputy General Manager), Dr. Harnam Singh (Regional Manager) and Sumit Thapa (Manager), Hexagon Geospatial, India, and Mr. Prabir De from SCIENCE, Dehradun, for the support received in the form of thoughtful suggestions to improve the study.

Author information



Corresponding author

Correspondence to Vinay Shankar Prasad Sinha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Sinha, V.S.P., Joshi, P.K. et al. Modelling Agriculture, Forestry and Other Land Use (AFOLU) in response to climate change scenarios for the SAARC nations. Environ Monit Assess 192, 236 (2020).

Download citation


  • Artificial neural network
  • Geospatial modelling
  • Land use land cover change
  • Multilayer perceptron