Skip to main content

An insight to municipal solid waste management of Varanasi city, India, and appraisal of vermicomposting as its efficient management approach

Abstract

Varanasi, India’s historic cultural capital, struggles with efficient waste management practices. This impacts environment and human well-being in terms of waste generation that is estimated around 550–650 TPD with a generation rate of 0.42 kg capita−1 day−1 (n = 117). The present study aims to explore and characterize wastes, current practices, ecological profiling, and phytotoxicity of an abandoned open dumping site, and vermicomposting of organic fraction of municipal solid waste (OFMSW) as sustainable waste management approach. Compositional analysis of waste indicates organic fraction (46.13%) as a major component along with a considerable amount of heavy metals. The calorific value and moisture content of municipal solid waste (MSW) was 2351.4 cal g−1 and 34.72%, respectively. Ecological profiling of the dumping site revealed that floral diversity and ecological species/indicators were negatively affected. Likewise, phytotoxicity results displayed a negative impact on germination and physiology of maize (Zea mays L.) plants grown on dumping site soil. Vermistabilization of OFMSW showed a significant increase in N (56.10–89.48%), P (33.93–82.87%), and K (25.55–50.42%) and a decrease in total organic carbon (15.15–24.81%). Similarly, C/N and C/P ratios decreased by 1.89–2.51 and 1.72–2.18 folds, respectively. A survey of stakeholders suggested that open dumping was the main practice adopted by Varanasi Municipal Corporation (VMC) during 2013–2015. Recently (2017–2018), VMC adopted different methods, such as door-to-door collection and source segregation for effective waste management. Waste characteristics and nutrient profile of the vermicompost explains that vermicomposting could be used for efficient waste management in Varanasi, further reducing the collection, transportation, and disposal costs of waste, which enables to close the loop and move towards a circular economy. Moreover, implications of existing waste management practices and possible management options need to be addressed scientifically. Therefore, this research outcome will help in designing a successful waste management plan for Varanasi and other cities with similar waste characteristics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Adriano, D.C. (1986). Trace elements in terrestrial environments: Biogeochemistry, Bioavailability and Risks of Metals. New York Springer-Verlag.

  • Aletor, V. A., & Adeogun, O. A. (1995). Nutrient and anti-nutrient components of some tropical leafy vegetables. Food Chemistry, 53(4), 375–379.

    CAS  Article  Google Scholar 

  • Ali, S. M., Pervaiz, A., Afzal, B., Hamid, N., & Yasmin, A. (2014). Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city. Journal of King Saud University, 26(1), 59–65.

    Article  Google Scholar 

  • Allen, S. E., Grimshaw, H. M., Parkinson, J. A., & Quarmby, C. (1974). Chemical analysis of ecological materials. Oxford: Blackwell Scientific.

    Google Scholar 

  • Allen, S. E., Grimshaw, H. M., & Rowland, A. P. (1986). Chemical analysis. In P. D. Moore & S. B. Chapman (Eds.), Methods in plant ecology (pp. 285–344). Oxford: Blackwill Scientific Publication.

    Google Scholar 

  • Allison, F. A. (1973). Soil organic matter and its role in crop production. Amsterdam: Elsevier.

    Google Scholar 

  • Anwar, S., Elagroudy, S., Razik, M. A., Gaber, A., Bong, C. P. C., & Ho, W. S. (2018). Optimization of solid waste management in rural villages of developing countries. Clean Technologies and Environmental Policy, 20(3), 489–502.

    Article  Google Scholar 

  • Arora, M., & Kaur, A. (2019). Azolla pinnata, Aspergillus terreus and Eisenia fetida for enhancing agronomic value of paddy straw. Scientific Reports, 9(1), 1341.

    Article  CAS  Google Scholar 

  • Awasthi, S.K. (1998). Prevention of Food Adulteration Act No 37 of 1954. Central and state rules as amended for 1999. Ashoka Law House.

  • Bastidas-Oyanedel, J. R., Fang, C., Almardeai, S., Javid, U., Yousuf, A., & Schmidt, J. E. (2016). Waste biorefinery in arid/semi-arid regions. Bioresource Technology, 215, 21–28.

    CAS  Article  Google Scholar 

  • Batool, S. A., & Ch, M. N. (2009). Municipal solid waste management in Lahore city district, Pakistan. Waste Management, 29(6), 1971–1981.

    Article  Google Scholar 

  • Beck-Friis, B., Smårs, S., Jönsson, H., & Kirchmann, H. (2001). SE—Structures and environment: Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. Journal of Agricultural Engineering Research, 78(4), 423–430.

    Article  Google Scholar 

  • Boda, R. K., Majeti, N. V. P., & Suthari, S. (2017). Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in peri-urban Greater Hyderabad: Remarks on seed oil. Environmental Science and Pollution Research, 24(24), 19955–19964.

    Article  Google Scholar 

  • Böddi, B., Oravecz, A. R., & Lehoczki, E. (1995). Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica, 31, 411–420.

    Google Scholar 

  • Carmo, D. L. D., Lima, L. B. D., & Silva, C. A. (2016). Soil fertility and electrical conductivity affected by organic waste rates and nutrient inputs. The Revista Brasileira de Ciência do Solo, 40, 1–17.

    Google Scholar 

  • Central Pollution Control Board (CPCB). (2005). Status of municipal solid waste generation, collection treatment, and disposal in class 1 cities. New Delhi: Central Pollution Control Board, Ministry of Environment and Forests, Government of India.

    Google Scholar 

  • Central Pollution Control Board (CPCB) (2017). Solid waste generation in 46 metro cities. Available online at: https://cpcb.nic.in/trend-of-solid-waste-generation-in-46-cities/. Accessed 15 March 2019.

  • Census of India (2011). The Government of India, New Delhi, India. Available online at: http://censusindia.gov.in/2011-prov-results/prov_rep_tables.html.

  • Chattopadhyay, S., Dutta, A., & Ray, S. (2009). Municipal solid waste management in Kolkata, India–a review. Waste Management, 29(4), 1449–1458.

    CAS  Article  Google Scholar 

  • Chiemchaisri, C., Juanga, J. P., & Visvanathan, C. (2007). Municipal solid waste management in Thailand and disposal emission inventory. Environmental Monitoring and Assessment, 135(1–3), 13–20.

    CAS  Article  Google Scholar 

  • Christensen, D., & Bach, L. T. (2015). A Danish–Vietnamese partnership for business and technology development in solid waste management. Resources, Conservation and Recycling, 105, 123–133.

    Article  Google Scholar 

  • City Development Plan for Varanasi, 2041 (Final City Development Plan). (2015). Available online at: http://nnvns.org/data/Final%20CDP%20Varanasi.pdf. Accessed 27 March 2019.

  • City Sanitation Plan for Varanasi (CSP). (2011). Available online at: https://www.nnvns.org/data/dpr/CSP%20Ex%20Summary_VNN.pdf. Accessed 23 March 2019.

  • Dach, J., & Jager J. (1995). Prediction of gas and temperature with the disposal of pretreated residential waste. In Proceeding of Fifth International Landfill Symposium (pp. 665-677). S. Margherita di Pula Cagliari, Sardinia, Italy, 2–6 October.

  • Dangi, M. B., Pretz, C. R., Urynowicz, M. A., Gerow, K. G., & Reddy, J. M. (2011). Municipal solid waste generation in Kathmandu, Nepal. Journal of Environmental Management, 92(1), 240–249.

    Article  Google Scholar 

  • Darlington, W., 2005. Compost-a guide for evaluating and using compost materials as soil amendments. Available online at: https://www.scribd.com/document/331034495/CompostAGuideForUsing-pdf. Accessed 5 March 2017.

  • Dazy, M., Béraud, E., Cotelle, S., Grévilliot, F., Férard, J. F., & Masfaraud, J. F. (2009). Changes in plant communities along soil pollution gradients: Responses of leaf antioxidant enzyme activities and phytochelatin contents. Chemosphere, 77(3), 376–383.

    CAS  Article  Google Scholar 

  • de Oliveira, J. A. P. (2019). Intergovernmental relations for environmental governance: Cases of solid waste management and climate change in two Malaysian states. Journal of Environmental Management, 233, 481–488.

    Article  Google Scholar 

  • Duxbury, A. C., & Yentsch, C. S. (1956). Plankton pigment monographs. Journal of Marine Research, 15, 19–101.

    Google Scholar 

  • Erses, S., Fazal, M. A., Onay, T. T., & Craig, W. H. (2005). Determination of solid waste sorption capacity for selected heavy metals in landfills. Journal of Hazardous Materials, 121(1–3), 223–232.

    Google Scholar 

  • European Union, (2002). Heavy metals in wastes. European Commission on Environment. Available online at: http://ec.europa.eu/environment/waste/studies/pdf/heavy_metalsreport.pdf. Accessed 16 July 2017.

  • Fahey, R. C., Brown, W. C., Adams, W. B., & Worsham, M. B. (1978). Occurrence of glutathione in bacteria. Journal of Bacteriology, 133(3), 1126–1129.

    CAS  Article  Google Scholar 

  • Ferronato, N., Rada, E. C., Portillo, M. A. G., Cioca, L. I., Ragazzi, M., & Torretta, V. (2019). Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. Journal of Environmental Management, 230, 366–378.

    Article  Google Scholar 

  • Food and Agriculture Organization (FAO), (2015). United Nations Farmer’s compost handbook. Available online at: http://www.fao.org/3/a-i3388e.pdf. Accessed 5 March 2017.

  • Garg, S. K., & Garg, R. (1999). Water supply engineering. New Delhi: Khanna Publishers.

    Google Scholar 

  • Gendebien, A., Pauwels, M., Ledrut-Damanet, M. J., Nyns, E. J., Willumsen, H. C., Butson, J., Fabry, R., & Ferrero, G. L. (1992). Potential landfill gas damages to vegetation. In Landfill Gas from Environment to Energy (pp. 35–46). Luxembourg: Commission of the European Communities.

    Google Scholar 

  • Gupta, N., Yadav, K. K., & Kumar, V. (2015). A review on current status of municipal solid waste management in India. Journal of Environmental Sciences, 37, 206–217.

    Article  Google Scholar 

  • Haas, W., Krausmann, F., Wiedenhofer, D., & Heinz, M. (2015). How circular is the global economy?: An assessment of material flows, waste production, and recycling in the European Union and the world in 2005. Journal of Industrial Ecology, 19(5), 765–777.

    Article  Google Scholar 

  • Harriss-White, B. (2019). Waste, social order, and physical disorder in small-town India. The Journal of Development Studies, 1–20.

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198.

    CAS  Article  Google Scholar 

  • Hernández-Berriel, M. C., Márquez-Benavides, L., González-Pérez, D. J., & Buenrostro-Delgado, O. (2008). The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (Mexico). Waste Management, 28, 14–20.

    Article  Google Scholar 

  • Horvath, G., Droppa, M., Oravecz, A., Raskin, V. I., & Marder, J. B. (1996). Formation of the photosynthetic apparatus during greening of cadmium-poisoned barley leaves. Planta, 199(2), 238–243.

    CAS  Article  Google Scholar 

  • Hussain, M., & Palmer, M. W. (2006). Effect of clipping, fertilization and water stress on species composition of experimental plant communities along a simulated soil gradient. Proceedings of the Oklahoma Academy of Science, 86, 53–63.

    Google Scholar 

  • Ibáñez-Forés, V., Bovea, M. D., Coutinho-Nóbrega, C., & de Medeiros, H. R. (2019). Assessing the social performance of municipal solid waste management systems in developing countries: Proposal of indicators and a case study. Ecological Indicators, 98(1), 164–178.

    Article  Google Scholar 

  • Jackson, M. L. (1975). Soil chemical analysis. New Delhi: Prentice-Hall of India.

    Google Scholar 

  • Jessup, R. S. (1970). Precise measurement of heat combustion with a bomb calorimeter (U.S). Washington: Bureau of Standards Monograph No. 7, US Government Printing Office.

    Google Scholar 

  • Jones, A., Nesaratnam, S. T., & Porteous, A. (2005). The open university household waste study, key findings from 2004. Reportto Department for Environment Food and Rural Affairs. Milton Keynes: The Open University.

    Google Scholar 

  • Joseph, K., & Nagendran, R. (2007). Top down and bottom up approach for sustainability of waste management in developing countries. In proceedings Sardinia, eleventh international waste management and landfill symposium, by CISA, Environmental Sanitary Engineering Centre, Italy.

  • Karmegam, N., Vijayan, P., Prakash, M., & Paul, J. A. J. (2019). Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. Journal of Cleaner Production, 228, 718–728.

    CAS  Article  Google Scholar 

  • Kaushik, P., & Garg, V. K. (2004). Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues. Bioresource Technology, 94(2), 203–209.

    CAS  Article  Google Scholar 

  • Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. World Bank publications.

  • Ko, P. S., & Poon, C. S. (2009). Domestic waste management and recovery in Hong Kong. Journal of Material Cycles and Waste Management, 11, 104–109.

    Article  Google Scholar 

  • Kumar, K. N., & Goel, S. (2009). Characterization of municipal solid waste (MSW) and a proposed management plan for Kharagpur, West Bengal, India. Resources, Conservation & Recycling, 53(3), 166–174.

    Article  Google Scholar 

  • Kumar, S., Bhattacharyya, J. K., Vaidya, A. N., Chakrabarti, T., Devotta, S., & Akolkar, A. B. (2009). Assessment of the status of municipal solid waste management in metro cities, state capitals, class I cities, and class II towns in India: An insight. Waste Management, 29(2), 883–895.

    Article  Google Scholar 

  • Kumar, N., Bauddh, K., Kumar, S., Dwivedi, N., Singh, D. P., & Barman, S. C. (2013). Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecological Engineering, 61, 491–495.

    Article  Google Scholar 

  • Kumar, S., Smith, S. R., Fowler, G., Velis, C., Kumar, S. J., Arya, S., Rena, Kumar, R., & Cheeseman, C. (2017). Challenges and opportunities associated with waste management in India. Royal Society Open Science, 4(3), 160764.

    Article  Google Scholar 

  • Letcher, T. M., & Vallero, D. A. (2019). Waste (2nd ed.). Academic Press.

  • Lohri, C. R., Camenzind, E. J., & Zurbrügg, C. (2014). Financial sustainability in municipal solid waste management–costs and revenues in Bahir Dar, Ethiopia. Waste Management, 34(2), 542–552.

    Article  Google Scholar 

  • Long, Y. Y., Shen, D. S., Wang, H. T., Lu, W. J., & Zhao, Y. (2011). Heavy metal source analysis in municipal solid waste (MSW): Case study on Cu and Zn. Journal of Hazardous Materials, 186(2–3), 1082–1087.

    CAS  Article  Google Scholar 

  • Maclachlan, S., & Zalik, S. (1963). Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Canadian Journal of Botany, 41(7), 1053–1062.

    CAS  Article  Google Scholar 

  • Mor, S., Ravindra, K., De Visscher, A., Dahiya, R. P., & Chandra, A. (2006). Municipal solid waste characterization and its assessment for potential methane generation, a case study. Science of the Total Environment, 371(1–3), 1–10.

    CAS  Article  Google Scholar 

  • Neave, I. A., Davey, S. M., Russell, S. M., Smith, J. J., & Florence, R. G. (1994). The relationships between vegetation patterns and environment on the south coast of New South Wales. Forest Ecology and Management, 72(1), 71–80.

    Article  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon and organic carbon and organic matter. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Method of soil analysis (pp. 539–579). American Society of Agronomy: Madison.

    Google Scholar 

  • Ogwueleka, T. C. (2004). Planning model for refuse management. Journal of Science and Technology, 3, 71–76.

    Google Scholar 

  • Padmaja, K., Prasad, D. D. K., & Prasad, A. R. K. (1990). Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica, 24(3), 399–405.

    CAS  Google Scholar 

  • Pan, S. Y., Du, M. A., Huang, I. T., Liu, I. H., Chang, E. E., & Chiang, P. C. (2015). Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: A review. Journal of Cleaner Production, 108, 409–421.

    Article  Google Scholar 

  • Panda, S. S., Minz, A. P., & Dhal, N. K. (2014). Floristic studies of Lajkura coal mines area Jharsuguda, Odisha: An overview. International Journal of Scientific and Research Publication, 4, 1–11.

    Google Scholar 

  • Papageorgiou, M. (2006). Public community partnerships for waste collection in three Indian cities, an exercise in world making – Best student essays of 2005–06. International Institute of Social Studies, 24, 104–117.

    Google Scholar 

  • Papargyropoulou, E., Colenbrander, S., Sudmant, A. H., Gouldson, A., & Tin, L. C. (2015). The economic case for low carbon waste management in rapidly growing cities in the developing world: The case of Palembang, Indonesia. Journal of Environmental Management, 163, 11–19.

    Article  Google Scholar 

  • Pardo, T., Clemente, R., Epelde, L., Garbisu, C., & Bernal, M. P. (2014). Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators. Journal of Hazardous Materials, 268, 68–76.

    CAS  Article  Google Scholar 

  • Pattnaik, S., & Reddy, M. V. (2010). Assessment of municipal solid waste management in Puducherry (Pondicherry), India. Resources, Conservation & Recycling, 54(8), 512–520.

    Article  Google Scholar 

  • Prechthai, T., Parkpian, P., & Visvanathan, C. (2008). Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumping site. Journal of Hazardous Materials, 156(1–3), 86–94.

    CAS  Article  Google Scholar 

  • Qadir, S. U., Raja, V., & Siddiqui, W. A. (2016). Morphological and biochemical changes in Azadirachta indica from coal combustion fly ash dumping site from a thermal power plant in Delhi, India. Ecotoxicology and Environmental Safety, 129, 320–328.

    CAS  Article  Google Scholar 

  • Ramachandra, T. V., Bharath, H. A., Kulkarni, G., & Han, S. S. (2018). Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews, 82, 1122.

    Article  Google Scholar 

  • Rathi, S. (2006). Alternative approaches for better municipal solid waste management in Mumbai, India. Waste Management, 26(10), 1192–1200.

    Article  Google Scholar 

  • Ravindra, K., Kaur, K., & Mor, S. (2015). System analysis of municipal solid waste management in Chandigarh and minimization practices for cleaner emissions. Journal of Cleaner Production, 89, 251–256.

    Article  Google Scholar 

  • Sharholy, M., Ahmad, K., Vaishya, R. C., & Gupta, R. D. (2007). Municipal solid waste characteristics and management in Allahabad, India. Waste Management, 27(4), 490–496.

    Article  Google Scholar 

  • Sharma, K., & Garg, V. K. (2019). Recycling of lignocellulosic waste as vermicompost using earthworm Eisenia fetida. Environmental Science and Pollution Research, 1, 10.1007/s11356-019-04639-8–12.

  • Sharma, B., Vaish, B., Srivastava, V., Singh, S., Singh, P., & Singh, R. P. (2018). An insight to atmospheric pollution-improper waste management and climate change nexus. In M. Oves, M. Z. Khan, & I. M. I. Ismail (Eds.), Modern age environmental problems and their remediation (pp. 23–47). Singapore: Springer Cham.

    Chapter  Google Scholar 

  • Shaylor, H., McBride, M., & Harrison, E. (2009). Sources and impacts of contaminants in soil. Cornell Waste Management Institute. http://cwmi.css.cornell.edu. Accessed 12 March 2019.

  • Shekdar, A. V. (2009). Sustainable solid waste management, an integrated approach for Asian countries. Waste Management, 29(4), 1438–1448.

    CAS  Article  Google Scholar 

  • Singh, G., Kawatra, A., & Sehgal, S. (2001). Nutritional composition of selected green leafy vegetables, herbs and carrots. Plant Foods for Human Nutrition, 56(4), 359–364.

    CAS  Article  Google Scholar 

  • Singh, R. P., Singh, P., Araujo, A. S., Ibrahim, M. H., & Sulaiman, O. (2011a). Management of urban solid waste, vermicomposting a sustainable option. Resources, Conservation & Recycling, 55(7), 719–729.

    Article  Google Scholar 

  • Singh, R. P., Tyagi, V. V., Allen, T., Ibrahim, M. H., & Kothari, R. (2011b). An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renewable and Sustainable Energy Reviews, 15(9), 4797–4808.

    Article  Google Scholar 

  • Smith, C. J., Hopmans, P., & Cook, F. J. (1996). Accumulation of Cr, Pb, Cu, Ni, Zn and Cd in soil following irrigation with treated urban effluent in Australia. Environmental Pollution, 94(3), 317–323.

    CAS  Article  Google Scholar 

  • Srivastava, V., Ismail, S. A., Singh, P., & Singh, R. P. (2015). Urban solid waste management in the developing world with emphasis on India, challenges and opportunities. Reviews in Environmental Science and Bio/Technology, 14(2), 317–337.

    Article  Google Scholar 

  • Srivastava, V., de Araujo, A. S. F., Vaish, B., Bartelt-Hunt, S., Singh, P., & Singh, R. P. (2016). Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Reviews in Environmental Science and Bio/Technology, 15(4), 677–696.

    Article  Google Scholar 

  • Srivastava, V., Sarkar, A., Singh, S., Singh, P., de Araujo, A. S., & Singh, R. P. (2017). Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science, 5, 64.

    Article  Google Scholar 

  • Srivastava, V., Gupta, S. K., Singh, P., Sharma, B., & Singh, R. P. (2018). Biochemical, physiological, and yield responses of lady’s finger (Abelmoschus esculentus L.) grown on varying ratios of municipal solid waste vermicompost. International Journal of Recycling of Organic Waste in Agriculture, 7(3), 241–250.

    Article  Google Scholar 

  • Srivastava, V., Goel, G., Thakur, V. K., Singh, R. P., de Araujo, A. S. F., & Singh, P. (2020). Analysis and advanced characterization of municipal solid waste vermicompost maturity for a green environment. Journal of Environmental Management, 255, 109914. https://doi.org/10.1016/j.jenvman.2019.109914.

    CAS  Article  Google Scholar 

  • Stahel, W. R. (2016). The circular economy. Nature News, 531(7595), 435.

    CAS  Article  Google Scholar 

  • Stobart, A. K., Griffiths, W. T., Ameen-Bukhari, I., & Sherwood, R. P. (1985). The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Plant Physiology, 63(3), 293–298.

    CAS  Article  Google Scholar 

  • Sun, J., Lv, Z. Q., Zhang, Y. M., & Liu, X. G. (2006). Treatment strategies of Beijing municipal solid waste. Chinese Journal of Urban Environmental Sanitation, 2, 33–37.

    Google Scholar 

  • Sundberg, C., Yu, D., Franke-Whittle, I., Kauppi, S., Smårs, S., Insam, H., Romantschuk, M., & Jönsson, H. (2013). Effects of pH and microbial composition on odour in food waste composting. Waste Management, 33(1), 204–211.

    CAS  Article  Google Scholar 

  • Suthar, S., Kumar, K., & Mutiyar, P. K. (2015). Nutrient recovery from compostable fractions of municipal solid wastes using vermitechnology. Journal of Material Cycles and Waste Management, 17(1), 174–184.

    CAS  Article  Google Scholar 

  • Teresa, M. V. M., & Anitha, C. T. (2000). Effect of ammonia fumes on total chlorophyll and carotenoid content in Rivina humilis Linn. Journal of Environmental Biology, 21(3), 207–209.

    CAS  Google Scholar 

  • Thitame, S. N., Pondhe, G. M., & Meshram, D. C. (2010). Characterisation and composition of municipal solid waste (MSW) generated in Sangamner City, district Ahmednagar, Maharashtra, India. Environmental Monitoring and Assessment, 170(1–4), 1–5.

    CAS  Article  Google Scholar 

  • Vaish, B., Srivastava, V., Singh, P., Singh, A., Singh, P. K., & Singh, R. P. (2016). Exploring untapped energy potential of urban solid waste. Energy, Ecology and Environment, 1(5), 323–342.

    Article  Google Scholar 

  • Vaish, B., Sharma, B., Srivastava, V., Singh, P., Ibrahim, M. H., & Singh, R. P. (2019a). Energy recovery potential and environmental impact of gasification for municipal solid waste. Biofuels, 10(1), 87–100.

  • Vaish, B., Srivastava, V., Singh, P. K., Singh, P., & Singh, R. P. (2019b). Energy and nutrient recovery from agro-wastes: Rethinking their potential possibilities. Environmental Engineering Research, 25(5). https://doi.org/10.4491/eer.2019.269 In this issue.

  • Vesilind, P. A., Worrell, W. A., & Reinhart, D. R. (2003). Solid waste engineering. Singapore: Thomson Asia Pvt. Ltd..

    Google Scholar 

  • Visvanathan, C., Trankler, J., Chiemchaisri, C., Basnayake, B. F. A., & Gongming, Z. (2004). Municipal solid waste management in Asia: Asia regional research program on environmental technology. AIT Publication.

  • Williams, A. J., & Banerjee, S. K. (1995). Effect of thermal power plant emissions on metabolic activities of Mangifera indica and Shorea robusta. Environment and Ecology, 13(4), 914–919.

    Google Scholar 

  • Xiao, Y., Bai, X., Ouyang, Z., Zheng, H., & Xing, F. (2007). The composition, trend and impact of urban solid waste in Beijing. Environmental Monitoring and Assessment, 135(1–3), 21–30.

    CAS  Article  Google Scholar 

  • Yousuf, T. B., & Rahman, M. (2007). Monitoring quantity and characteristics of municipal solid waste in Dhaka City. Environmental Monitoring and Assessment, 135(1-3), 3–11.

    Article  CAS  Google Scholar 

  • Zhang, H. Y., Jiang, Y. N., & He, Z. Y. (2005). Cadmium accumulation and oxidative burst in garlic (Allium sativum). Journal of Plant Physiology, 162(9), 977–984.

    CAS  Article  Google Scholar 

  • Zia, H., & Devadas, V. (2007). Municipal solid waste management in Kanpur, India: Obstacles and prospects. Management of Environmental Quality: An International Journal, 18(1), 89–108.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Director, Dean and Head, Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, India, for infrastructural facility. Authors extend their sincere thanks to Prof. N. K. Dubey, Department of Botany, Banaras Hindu University (BHU), for identification of plant species and Ms. Talat Afreen, Department of Botany, BHU, for her help in survey. Authors highly appreciate the authorities of Varanasi Municipal Corporation, Varanasi, India, for their cooperation, and Mr. Kamlesh Kumar for his help during waste sampling and survey. VS is grateful to the Indian Council of Medical Research, Government of India, for awarding Junior and Senior Research fellowship.

Funding

RPS received project grant (SERB/F/2544/2012-2013) from the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Pratap Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 745 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srivastava, V., Vaish, B., Singh, R.P. et al. An insight to municipal solid waste management of Varanasi city, India, and appraisal of vermicomposting as its efficient management approach. Environ Monit Assess 192, 191 (2020). https://doi.org/10.1007/s10661-020-8135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8135-3

Keywords

  • Municipal solid waste (MSW)
  • Physico-chemical characterization
  • Phytotoxicity
  • Ecological profiling
  • Vermicomposting
  • Circular economy
  • Varanasi