Zooplankton indicator-based assessment in relation to site location and abiotic factors: a case study from the Gulf of Riga

Abstract

There are a number of zooplankton parameters proposed as indicators to evaluate environmental status of marine ecosystems. Mean size and total stock (MSTS) is the only zooplankton-based and HELCOM (Baltic Marine Environment Protection Commission – Helsinki Commission)-approved core indicator. MSTS was developed to evaluate the environmental status of the Baltic Sea based on total biomass (or abundance) and mean body weight of mesozooplankton. This indicator reflects status of the food web and zooplankton biodiversity. Both are qualitative descriptors for determining good environmental status (GES) as defined by the EU Marine Strategy Framework Directive 2008/56/EC. However, the existing indicator concept is applicable to the extent that it characterizes off-shore pelagic habitats, while use of MSTS for coastal habitats remains challenging. In this case study, we aimed to assess and discuss performance of MSTS applied to mesozooplankton data from the shallow Gulf of Riga. Both off-shore and coastal communities were included in the study. MSTS responses to variable environmental factors (temperature, salinity and riverine runoff) were analysed. Temporal variations in temperature revealed response in mean size, whereas salinity covaried with total stock (both – biomass and abundance). However, spatial variations of MSTS parameters stayed unexplained. The results demonstrate difficulties with and provide possible solutions for MSTS-based assessment, with a particular emphasis on coastal waters. The use of mesozooplankton abundance as a determinant parameter for assessment of coastal waters and substitution of the corresponding 99% confidence interval of the mean as an assessment value instead of the mean have been considered.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andersson, A., Meier, H. E. M., Ripszam, M., Rowe, O., Wikner, J., Haglund, P., Eilola, K., Legrand, C., Figueroa, D., Paczkowska, J., Lindehoff, E., Tysklind, M., & Elmgren, R. (2015). Projected future climate change and Baltic Sea ecosystem management. AMBIO, 44, 345–356. https://doi.org/10.1007/s13280-015-0654-8.

    CAS  Article  Google Scholar 

  2. Andrushaitis, A., Seisuma, Z., Legzdina, M., & Lenshs, A. (1995). River load of eutrophying substances and heavy metals into the Gulf of Riga. In E. Ojaveer (Ed.), Ecosystem of the Gulf of Riga between 1920 and 1990 (pp. 32–40). Tallin: Estonian Academy.

    Google Scholar 

  3. Arula, T., Raid, T., Simm, M., & Ojaveer, H. (2016). Temperature-driven changes in early life-history stages influence the Gulf of Riga spring spawning herring (Clupea harengus m.) recruitment abundance. Hydrobiologia. https://doi.org/10.1007/s10750-015-2486-8.

  4. BACC. (2015). Second assessment of climate change for the Baltic Sea basin. Geesthacht: SpringerOpen.

    Google Scholar 

  5. Bedford, J., Johns, D., Greenstreet, S., & McQuatters-Gollop, A. (2018). Plankton as prevailing conditions: A surveillance role for plankton indicators within the marine strategy framework directive. Marine Policy. https://doi.org/10.1016/j.marpol.2017.12.021.

  6. Broman, E., Brüsin, M., Dopson, M., & Hylander, S. (2015). Oxygenation of anoxic sediments triggers hatching of zooplankton eggs. Proceedings of the Royal Society B. https://doi.org/10.1098/rspb.2015.2025.

  7. Chiba, S., Batten, S., Martin, C. S., Ivory, S., Miloslavich, P., & Weatherdon, L. V. (2018). Zooplankton monitoring to contribute towards addressing global biodiversity conservation challenges. Journal of Plankton Research. https://doi.org/10.1093/plankt/fby030.

  8. Directive 2008/56/EC (2008) Directive 2008/56/EC of the European Parliament and the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008L0056&from=EN. Accessed 13 November 2019.

  9. Gorokhova, E., Lehtiniemi, M., Lesutiene, J., Strake, S., Uusitalo, L., Demereckiene, N., & Amid, C. (2013) Zooplankton mean size and total abundance. HELCOM Core Indicator Report. http://www.helcom.fi/Core%20Indicators/HELCOM-CoreIndicator-Zooplankton_mean_size_and_total_abundance.pdf. Accessed 13 November 2019.

  10. Gorokhova, E., Lehtiniemi, M., Postel, L., Rubene, G., Amid, C., Lesutiene, J., et al. (2016). Indicator properties of Baltic zooplankton for classification of environmental status within marine strategy framework directive. PLoS One. https://doi.org/10.1371/journal.pone.0158326.

  11. HELCOM (2009) Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Balt. Sea Environ. Proc. No. 115B.

  12. HELCOM (2017) Manual for Marine Monitoring in the COMBINE Programme of HELCOM. http://www.helcom.fi/action-areas/monitoring-and-assessment/manuals-and-guidelines/combine-manual. Accessed 13 November 2019.

  13. HELCOM (2018) Zooplankton mean size and total stock. HELCOM core indicator report. http://www.helcom.fi/Core%20Indicators/Zooplankton%20mean%20size%20and%20total%20stock%20HELCOM%20core%20indicator%202018.pdf. Accessed 13 November 2019.

  14. Hernroth, L. (1985). Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. Baltic Marine Biologists Publication, 10, 1–32.

    Google Scholar 

  15. ICES. (2017). Baltic fisheries assessment working group (WGBFAS). Copenhagen: ICES HQ https://pub.epsilon.slu.se/15066/1/01%20WGBFAS%20Report%202017.pdf. Accessed 13 November 2019.

    Google Scholar 

  16. Ikauniece, A. (2001). Long term abundance dynamics of coastal zooplankton in the Gulf of Riga. Environment International. https://doi.org/10.1016/S0160-4120(00)00094-5.

  17. Jernberg, S., Lehtiniemi, M., & Uusitalo, L. (2017). Evaluating zooplankton indicators using signal detection theory. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2017.01.038.

  18. Kane, D. D., Gannon, J. E., & Culver, D. A. (2004). The status of Limnocalanus macrurus (Copepoda: Calanoida: Centropagidae) in Lake Erie. Journal of Great Lakes Research. https://doi.org/10.1016/S0380-1330(04)70326-3.

  19. Klais, R., Lehtiniemi, M., Rubene, G., Semenova, A., Margonski, P., Ikauniece, A., et al. (2016). Spatial and temporal variability of zooplankton in a temperate semi-enclosed sea: Implications for monitoring design and long-term studies. Journal of Plankton Research. https://doi.org/10.1093/plankt/fbw022.

  20. Kotta, J., Lauringson, V., Martin, G., Simm, M., Kotta, I., Herkül, K., & Ojaveer, H. (2008). Gulf of Riga and Pärnu Bay. In U. Schiewer (Ed.), Ecology of Baltic coastal waters (pp. 217–243). Berlin: Springer.

    Google Scholar 

  21. Livdāne, L., Putnis, I., Rubene, G., Elferts, D., & Ikauniece, A. (2016). Baltic herring prey selectively on older copepodites of Eurytemora affinis and Limnocalanus macrurus in the Gulf of Riga. Oceanologia. https://doi.org/10.1016/j.oceano.2015.09.001.

  22. McQuatters-Gollop, A., Atkinson, A., Aubert, A., Bedford, J., Best, M., Bresnan, E., et al. (2019). Plankton lifeforms as a biodiversity indicator for regional-scale assessment of pelagic habitats for policy. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2019.02.010.

  23. Ojaveer, E. (2017). Ecosystems and living resources of the Baltic Sea. Cham: Springer.

    Google Scholar 

  24. Ojaveer, E., Lumberg, A., & Ojaveer, H. (1998). Highlights of zooplankton dynamics in Estonian waters (Baltic Sea). ICES Journal of Marine Science. https://doi.org/10.1006/jmsc.1998.0393.

  25. Otto, S. A., Kadin, M., Casini, M., Torres, M. A., & Blenckner, T. (2018). A quantitative framework for selecting and validating food web indicators. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2017.05.045.

  26. R Core Team. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  27. Simm, M., Kotta, J., & Jänes, H. (2014). Mean weight and total biomass of zooplankton as a core indicator of biodiversity of the marine strategy framework directive: An example of the Gulf of Riga. Estonian Journal of Ecology. https://doi.org/10.3176/eco.2014.4.03.

  28. Skudra, M., & Lips, U. (2016). Characteristics and inter-annual changes in temperature, salinity and density distribution in the Gulf of Riga. Oceanologia. https://doi.org/10.1016/j.oceano.2016.07.001.

  29. Soetaert, K., & Van Rijswijk, P. (1993). Spatial and temporal patterns of the zooplankton in the Westerschelde estuary. Marine Ecology Progress Series. https://www.jstor.org/stable/24833597. Accessed 27 Jan 2020.

  30. Strøm, K. M. (1946). The ecological niche. Nature, 157, 375.

    Article  Google Scholar 

  31. Telesh, I., & Heerkloss, R. (2002). Atlas of estuarine zooplankton of the southern and eastern Baltic Sea. Part I: Rotifera. Hamburg: Kovač.

    Google Scholar 

  32. Telesh, I., & Heerkloss, R. (2004). Atlas of estuarine zooplankton of the southern and eastern Baltic Sea. Part II: Crustacea. Hamburg: Kovač.

    Google Scholar 

  33. Wessa P. (2015) Box-cox normality plot (v1.1.11) in free statistics software (v1.1.23-r7). Office for Research Development and Education. http://wessa.net/rwasp_boxcoxnorm.wasp/. Accessed on 16 April 2018.

  34. Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.

    Google Scholar 

  35. Wood, S. N. (2017). Generalized additive models: An introduction with R (2 nd edition). Chapman and Hall/CRC.

Download references

Acknowledgements

The sampling was performed under the Latvian Marine Monitoring Programme. We are grateful to our colleagues from the Latvian Institute of Aquatic Ecology for field work and maintenance of a long-term database. We also thank researchers Juris Aigars, Bjørn Walseng, Grace Wyngaard and Agata Weydmann-Zwolicka for their comments on the manuscript and Silvija Staprans for revising the English.

Funding

The study was partly funded by the Administration of Latvian Environmental Protection Fund project no. 1–08/145/2017.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Astra Labuce.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Labuce, A., Dimante-Deimantovica, I., Tunens, J. et al. Zooplankton indicator-based assessment in relation to site location and abiotic factors: a case study from the Gulf of Riga. Environ Monit Assess 192, 147 (2020). https://doi.org/10.1007/s10661-020-8113-9

Download citation

Keywords

  • MSTS
  • Mesozooplankton
  • Environmental status
  • Baltic Sea
  • Coastal
  • MSFD