Skip to main content
Log in

A sieve-conducted two-syringe-based pressurized liquid-phase microextraction for the determination of indium by slotted quartz tube-flame atomic absorption spectrometry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, a new liquid-phase microextraction method termed sieve-conducted two-syringe-based pressurized liquid-phase microextraction (SCTS-PLPME) was developed as a preconcentration tool for indium. Here, two syringes were connected to each other by an apparatus to produce an environment subject to pressure. The pressure created between the two syringes by simultaneous movements of the syringe plungers (to and fro) generated an efficient dispersion and this eliminated the need for dispersive solvents. Determination of indium after preconcentration was carried out with a slotted quartz tube attached flame atomic absorption spectrometer (SQT-FAAS). The detection limit (LOD) and quantification limit (LOQ) of the developed method were calculated as 19.2 and 72.2 μg L−1, respectively. The reliability and accuracy of the developed method was tested by performing recovery studies on lake water spiked at different concentrations and the obtained percent recoveries were between 101.2 and 106.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SCTS:

Sieve-conducted two-syringe

PLPME:

Pressurized liquid-phase microextraction

SQT:

Slotted quartz tube

FAAS:

Flame atomic absorption spectrometry

LOD:

Limit of detection

LOQ:

Limit of quantitation

RSD:

Relative standard deviation

ICP-MS:

Inductively coupled plasma mass spectrometry

GFAAS:

Graphite furnace atomic absorption spectrometry

HGAAS:

Hydride generation atomic absorption spectrometry

LLME:

Liquid-liquid microextraction

DLLME:

Dispersive liquid-liquid microextraction

LPME:

Liquid-phase microextraction

DDTC:

Diethyldithiocarbamate

References

  • Akkaya, E., Chormey, D. S., & Bakırdere, S. (2017). Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy. Environmental Monitoring and Assessment, 189(10), 513.

    Article  Google Scholar 

  • Altunay, N., Elik, A., & Gürkan, R. (2019). Monitoring of some trace metals in honeys by flame atomic absorption spectrometry after ultrasound assisted-dispersive liquid liquid microextraction using natural deep eutectic solvent. Microchemical Journal, 147, 49–59.

    Article  CAS  Google Scholar 

  • Arslan, Y., Kendüzler, E., & Ataman, O. Y. (2011). Indium determination using slotted quartz tube-atom trap-flame atomic absorption spectrometry and interference studies. Talanta, 85(4), 1786–1791.

    Article  CAS  Google Scholar 

  • Çelik, B., Akkaya, E., Bakirdere, S., & Aydin, F. (2018). Determination of indium using vortex assisted solid phase microextraction based on oleic acid coated magnetic nanoparticles combined with slotted quartz tube-flame atomic absorption spectrometry. Microchemical Journal, 141, 7–11.

    Article  Google Scholar 

  • Diuzheva, A., Balogh, J., Studenyak, Y., Cziáky, Z., & Jekő, J. (2019). A salting-out assisted liquid-liquid microextraction procedure for determination of cysteine followed by spectrophotometric detection. Talanta, 194, 446–451.

    Article  CAS  Google Scholar 

  • Elik, A., Altunay, N., & Gürkan, R. (2017). Microextraction and preconcentration of Mn and cd from vegetables, grains and nuts prior to their determination by flame atomic absorption spectrometry using room temperature ionic liquid. Journal of Molecular Liquids, 247, 262–268.

    Article  CAS  Google Scholar 

  • Ferreira, S. L. C., Costa, A. C. S., & Andrade, H. A. S. (1991). 2-(2-Thiazolylazo)-p-cresol (TAC) as a reagent for the spectrophotometric determination of indium(III). Microchemical Journal, 44(1), 63–66.

    Article  CAS  Google Scholar 

  • Hassanien, M. M., Kenawy, I. M., Mostafa, M., & Eldaly, H. (2011). Extraction of gallium, indium and thallium from aquatic media using amino silica gel modified by gallic acid (Vol. 172).

    Google Scholar 

  • Houri, T., Khairallah, Y., Zahab, A. A., Osta, B., Romanos, D., & Haddad, G. (2019). Heavy metals accumulation effects on the photosynthetic performance of geophytes in Mediterranean reserve. Journal of King Saud University - Science.

  • Kabata, A., & Pendias, H. (1985). Trace elements in soils and plants / Alina Kabata-Pendias, Henryk Pendias.

  • Kaya, G., & Yaman, M. (2008). Online preconcentration for the determination of lead, cadmium and copper by slotted tube atom trap (STAT)-flame atomic absorption spectrometry. Talanta, 75(4), 1127–1133.

    Article  CAS  Google Scholar 

  • Krawczyk-Coda, M., & Stanisz, E. (2018). Low cost adsorbents in ultrasound-assisted dispersive micro solid-phase extraction for simultaneous determination of indium and nickel by high-resolution continuum source graphite furnace atomic absorption spectrometry in soils and sediments. Analytical Methods, 10(23), 2681–2690.

    Article  CAS  Google Scholar 

  • Kumar Dubey, R., Puri, S., Kumar Gupta, M., & Krishan Puri, B. (1998). Preconcentration of indium(III) from complex materials after adsorption of its Morpholine-4-dithiocarbamate on naphthalene or using Morpholine-4-dithiocarbamate-cetyltrimethylammonium bromide-naphthalene adsorbent. Analytical Letters, 31(15), 2729–2746.

    Article  Google Scholar 

  • Li, M.-J., Zhang, H.-Y., Liu, X.-Z., Cui, C.-Y., & Shi, Z.-H. (2015). Progress of extraction solvent dispersion strategies for dispersive liquid-liquid microextraction. Chinese Journal of Analytical Chemistry, 43(8), 1231–1240.

    Article  CAS  Google Scholar 

  • Martínez, N. C., Bermejo Barrera, A., & Bermejo-Barrera, P. (2005). Indium determination in different environmental materials by electrothermal atomic absorption spectrometry with Amberlite XAD-2 coated with 1-(2-pyridylazo)-2-naphthol (Vol. 66).

  • Masi, A. N., & Olsina, R. A. (1999). Determination by XRF of trace amounts of Ga and In in geological samples preconcentrated with macroporous resins loaded with 5-phenylazo-8-quinolinol (5-PHAQ) (Vol. 17).

  • Matusiewicz, H., & Krawczyk-Coda, M. (2007). Hydride generation-in situ trapping-flame atomic absorption spectrometry hybridization for indium and thallium determination (Vol. 18).

  • Minamisawa, H., Murashima, K., Minamisawa, M., Arai, N., & Okutani, T. (2003). Determination of indium by graphite furnace atomic absorption spectrometry after coprecipitation with chitosan (Vol. 19).

  • Mortada, W. I., Kenawy, I. M., & Hassanien, M. M. (2015). A cloud point extraction procedure for gallium, indium and thallium determination in liquid crystal display and sediment samples. Analytical Methods, 7(5), 2114–2120.

    Article  CAS  Google Scholar 

  • Mueller, L., Neumann, B., Hoesl, S., Linscheid, M. W., Jakubowski, N., Schlüter, H., Theuring, F., Sauter, G., & Simon, R. (2015). Internal standardization of LA-ICP-MS immuno imaging via printing of universal metal spiked inks onto tissue sections (Vol. 31).

  • Połedniok, J. (2007). A sensitive spectrophotometric method for determination of trace quantities of indium in soil. Water, Air, and Soil Pollution, 186(1), 343–349.

    Article  Google Scholar 

  • Rezaee, M., Assadi, Y., Milani Hosseini, M.-R., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1), 1–9.

    Article  CAS  Google Scholar 

  • Sajid, M., & Płotka-Wasylka, J. (2018). “Green” nature of the process of derivatization in analytical sample preparation. TrAC Trends in Analytical Chemistry, 102, 16–31.

    Article  CAS  Google Scholar 

  • Shah, F., Soylak, M., Kazi, T. G., & Afridi, H. I. (2012). Single step in-syringe system for ionic liquid based liquid microextraction combined with flame atomic absorption spectrometry for lead determination. Journal of Analytical Atomic Spectrometry, 27(11), 1960–1965.

    Article  CAS  Google Scholar 

  • Soylak, M., & Yilmaz, E. (2011). Ionic liquid dispersive liquid–liquid microextraction of lead as pyrrolidinedithiocarbamate chelate prior to its flame atomic absorption spectrometric determination (Vol. 275).

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology: Volume 3: Environmental toxicology (pp. 133–164). Basel: Springer Basel.

    Chapter  Google Scholar 

  • Tekin, Z., Erarpat, S., Şahin, A., Selali Chormey, D., & Bakırdere, S. (2019). Determination of vitamin B12 and cobalt in egg yolk using vortex assisted switchable solvent based liquid phase microextraction prior to slotted quartz tube flame atomic absorption spectrometry. Food Chemistry, 286, 500–505.

    Article  CAS  Google Scholar 

  • Tsai, W.-C., & Huang, S.-D. (2009). Dispersive liquid–liquid microextraction with little solvent consumption combined with gas chromatography–mass spectrometry for the pretreatment of organochlorine pesticides in aqueous samples. Journal of Chromatography A, 1216(27), 5171–5175.

    Article  CAS  Google Scholar 

  • Uhrovčík, J., & Lesný, J. (2015). Determination of indium in liquid crystal displays by flame atomic absorption spectrometry. Journal of Industrial and Engineering Chemistry, 21, 163–165.

    Article  Google Scholar 

  • Vuković, J., Avidad, M. A., & Capitán-Vallvey, L. F. (2012). Characterization of disposable optical sensors for heavy metal determination. Talanta, 94, 123–132.

    Article  Google Scholar 

  • Zu, W., Yang, Y., Wang, Y., Yang, X., Liu, C., & Ren, M. (2018). Rapid determination of indium in water samples using a portable solution cathode glow discharge-atomic emission spectrometer. Microchemical Journal, 137, 266–271.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezgin Bakırdere.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unutkan, T., Borahan, T., Girgin, A. et al. A sieve-conducted two-syringe-based pressurized liquid-phase microextraction for the determination of indium by slotted quartz tube-flame atomic absorption spectrometry. Environ Monit Assess 192, 133 (2020). https://doi.org/10.1007/s10661-020-8104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8104-x

Keywords

Navigation