Skip to main content
Log in

Evaluation of Salix alba, Juglans regia and Populus nigra as biomonitors of PTEs in the riparian soils of the Sava River

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A large number of human activities result in the release of potentially toxic elements (PTEs) into the environment, which could lead to the degradation of riparian areas. This study aimed to evaluate the potential of Salix alba, Juglans regia and Populus nigra for the biomonitoring of PTEs in the riparian soils of the Sava River. Levels of seven PTEs (As, Cd, Cr, Cu, Ni, Pb and Zn) were measured in the soils, roots and leaves of plants at selected sampling sites and evaluated according to bioaccumulation and translocation factors. The obtained results showed that in riparian soils, As, Cr, Cu, Ni and Zn were at levels considered to be critical for plants. The levels of As, Cd, Cr, Ni and Zn measured in roots of Salix alba and As, Cr, Ni and Zn in its leaves were toxic for plant tissue. Toxic levels of Cr were also measured in the roots of Juglans regia and As in its leaves, as well as As and Cr in the roots of Populus nigra, and Zn in its leaves. Bioconcentration and translocation factors showed that S. alba and P. nigra have potential for the phytoextraction of Zn and Cd, while J. regia has potential for the phytoextraction of As. In terms of phytostabilization potential, S. alba proved to be good for the phytostabilization of Cd and Cu, and J. regia for the phytostabilization of Cr, As, Ni and Pb, while P. nigra showed potential for the phytostabilization of Cr, Ni, Pb and Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments, Biogeochemistry, bioavailability and risk of metals. New York: Springer ISBN 978-0-387-21510-5.

    Book  Google Scholar 

  • Alloway, B. J. (2013). Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Environmental pollution (22) (Third ed.). New York: Springer ISBN 978-94-007-4470-7.

    Google Scholar 

  • Antonijević, M. M., Dimitrijević, M. D., Milić, S. M., & Nujkić, M. M. (2012). Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia). Journal of Environmental Monitoring, 14(3), 866–877. https://doi.org/10.1039/c2em10803h.

  • Arik, F., & Yaldiz, T. (2010). Heavy metal determination and pollution of the soil and plants of southeast Tavşanli (Kütahya, Turkey). Clean: Soil, Air, Water, 38(11), 1017–1030. https://doi.org/10.1002/clen.201000131.

  • Arpadjan, S., Momchilova, S., Elenkova, D., & Blagoeva, E. (2013). Essential and toxic microelement profile of walnut (Juglans regia L.) cultivars grown in industrially contaminated area - evaluation for human nutrition and health. Journal of Food and Nutrition Research, 52(2), 121–127 ISSN: 1336-8672.

    CAS  Google Scholar 

  • Bai, J., Zhao, Q., Lu, Q., Wang, J., & Reddy, K. R. (2015). Effects of freshwater input on trace element pollution in salt marsh soils of a typical coastal estuary China. Journal of Hydrology, 520, 186–192. https://doi.org/10.1016/j.jhydrol.2014.11.007.

  • Baldantoni, D., Cicatelli, A., Bellino, A., & Castiglione, S. (2014). Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements. Journal of Environmental Management, 146, 94–99. https://doi.org/10.1016/j.jenvman.2014.07.045.

  • Barbieri, M. (2016). The importance of enrichment factor (EF) and Geoaccumulation index (Igeo) to evaluate the soil contamination. Journal of Geology and Geophysics, 5(1), 1–4. https://doi.org/10.4172/2381-8719.1000237.

  • Bargagli, R. (1998). Trace elements in terrestrial plants: An ecophysiological approach to biomonitoring and biorecovery. Berlin: Springer-Verlag ISBN 9783540645511.

    Google Scholar 

  • Baslar, S., Dogan, Y., Yenil, N., Karagoz, S., & Bag, H. (2005). Trace element biomonitoring by leaves of Populus nigra L. from Western Anatolia, Turkey. Journal of Environmental Biology, 26(4), 665–668 ISSN: 0254-8704.

    CAS  Google Scholar 

  • Bedell, J. P., Capilla, X., Giry, C., Schwartz, C., Morel, J. L., & Perrodin, Y. (2009). Distribution, movement and availability of Cd and Zn in a dredged sediment cultivated with Salix alba. Environmental and Experimental Botany, 67(2), 403–414. https://doi.org/10.1016/j.envexpbot.2009.08.001.

  • Berlizov, A. N., Blum, O. B., Filby, R. H., Malyuk, I. A., & Tryshyn, V. V. (2007). Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Science of the Total Environment, 372, 693–706. https://doi.org/10.1016/j.scitotenv.2006.10.029.

  • Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103–120. https://doi.org/10.1016/j.jenvman.2012.04.002.

  • Chen, L., Gao, S., Zhu, P., Liu, Y., Hu, T., & Zhang, J. (2014). Comparative study of metal resistance and accumulation of lead and zinc in two poplars. Plant Physiology, 151, 390–405. https://doi.org/10.1111/ppl.12120.

  • Chojnacka, K., Chojnacki, A., Górecka, H., & Górecki, H. (2005). Bioavailability of heavy metals from polluted soils to plants. Science of the Total Environment, 337(1–3), 175–182. https://doi.org/10.1016/j.scitotenv.2004.06.009.

  • Cui, S., Zhou, Q. X., & Chao, L. (2007). Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, Northeast China. Environmental Geology, 51, 1043–1048. https://doi.org/10.1007/s00254-006-0373-3.

  • Čakmak, D., Perović, V., Antić-Mladenović, S., Kresović, M., Saljnikov, E., Mitrović, M., & Pavlović, P. (2018). Contamination, risk, and source apportionment of potentially toxic microelements in river sediments and soil after extreme flooding in the Kolubara River catchment in Western Serbia. Journal of Soils and Sediments, 18, 1981–1993. https://doi.org/10.1007/s11368-017-1904-0.

  • Dinelli, E., & Lombini, A. (1996). Metal distributions in plants growing on copper mine spoils in Northern Apennines, Italy: The evaluation of seasonal variations. Applied Geochemistry, 11(1–2), 375–385. https://doi.org/10.1016/0883-2927(95)00071-2.

  • Djingova, R., Wagner, G., & Kuleff, I. (1999). Screening of heavy metal pollution in Bulgaria using Populus nigra “Italica”. Science of the Total Environment, 234(1–3), 175–184. https://doi.org/10.1016/S0048-9697(99)00257-0.

  • Domínguez, M. T., Marañón, T., Murillo, J. M., Schulin, R., & Robinson, B. H. (2008). Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: A large-scale phytomanagement case study. Environmental Pollution, 152(1), 50–59. https://doi.org/10.1016/j.envpol.2007.05.021.

  • Dos Santos Utmazian, M. N., Wieshammer, G., Vega, R., & Wenzel, W. W. (2007). Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environmental Pollution, 148(1), 155–165. https://doi.org/10.1016/j.envpol.2006.10.045.

  • Dragun, Z., Filipović Marijić, V., Vuković, M., & Raspor, B. (2015). Metal bioavailability in the Sava River water. In R. Milačič, J. Ščančar, & M. Paunović (Eds.), The Sava River (pp. 123–155). Dodrecht: Springer ISBN 978-3-662-44034-6.

    Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407(13), 3972–3985. https://doi.org/10.1016/j.scitotenv.2008.07.025.

  • Fan, J., He, Z., Ma, L. Q., & Stoffella, P. J. (2011). Accumulation and availability of copper in citrus grove soils as affected by fungicide application. Journal of Soils and Sediments, 11(4), 639–648. https://doi.org/10.1007/s11368-011-0349-0.

  • Feizi, M., & Jalali, M. (2015). Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues. Journal of the Taiwan Institute of Chemical Engineers, 54, 125–136. https://doi.org/10.1016/j.jtice.2015.03.027.

  • Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformations in the soil-rhizosphere-plant system: Fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278. https://doi.org/10.1016/S0168-1656(02)00218-3.

  • Gaudet, M., Pietrini, F., Beritognolo, I., Iori, V., Zacchini, M., Massacci, A., Mugnozza, G. S., & Sabatti, M. (2011). Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Physiology, 31, 1309–1318. https://doi.org/10.1093/treephys/tpr088.

  • Gawlik, B.W., Bidoglio, G. (2006). Background values in European soils and sewage sludges PART III, conclusions, comments and recommendations. European Commission, Directorate-General Joint Research Centre, Institute for Environment and Sustainability (Directive 86/278/EEC). https://publications.europa.eu/en/publication-detail/-/publication/f7081979-a8dc-4c2d-a7eb-63b4dfdd9b83/language-en. Accessed 16 March 2019.

  • Ghaderian, S. M., & Ghotbi Ravandi, A. A. (2012). Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. Journal of Geochemical Exploration, 123, 25–32. https://doi.org/10.1016/j.gexplo.2012.06.022.

  • Gjorgieva, D., Kadifkova-Panovska, T., Bačeva, K., & Stafilov, T. (2011). Assessment of heavy metal pollution in Republic of Macedonia using a plant assay. Archives of Environmental Contamination and Toxicology, 60, 233–240. https://doi.org/10.1007/s00244-010-9543-0.

  • Han, S. H., Kim, D. H., & Shin, S. J. (2013). Bioaccumulation and physiological response of five willows to toxic levels of cadmium and zinc. Soil and Sediment Contamination, 22(3), 241–255. https://doi.org/10.1080/15320383.2013.726290.

  • Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20(9), 6150–6159. https://doi.org/10.1007/s11356-013-1668-z.

  • ISRBC (2009). Sava River Basin analysis report. http://www.savacommission.org/dms/docs/dokumenti/documents_publications/publications/other_publications/sava_river_basin_analysis_report_high_res.pdf. Accessed 19 April 2019.

  • ISRBC (2016). Towards practical guidance for sustainable sediment management using the Sava River Basin as a showcase. Estimation of Sediment Balance for the Sava River. http://www.savacommission.org/dms/docs/dokumenti/documents_publications/publications/other_publications/balses_final.pdf. Accessed 19 April 2019.

  • Jakovljević, T., Bubalo, M. C., Orlović, S., Sedak, M., Bilandžić, N., Brozinčević, I., & Redovniković, I. R. (2014). Adaptive response of poplar (Populus nigra L.) after prolonged cd exposure period. Environmental Science and Pollution Research, 21(5), 3792–3802. https://doi.org/10.1007/s11356-013-2292-7.

  • Jovanović, B. (1970). Order Juglandales. In M. Josifović (Ed.), The Flora of Serbia. Belgrade: Book II, Serbian Academy of Science and Art (in Serbian).

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (fourth ed.). Boca Raton: CRC Press ISBN 978-1-4200-9368-1.

    Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. New York: Springer-Verlag ISBN 978-3-540-32714-1.

    Book  Google Scholar 

  • Karadžić, B., Jarić, S., Pavlović, P., & Mitrović, M. (2015). Aquatic and wetland vegetation along the Sava River. In R. Milačič, J. Ščančar, & M. Paunović (Eds.), The Sava River (pp. 249–317). Berlin, Heidelberg: Springer-Verlag.

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–a review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z.

  • Kuzovkina, Y. A., Knee, M., & Quigley, M. F. (2004). Cadmium and copper uptake and translocation in five willow (Salix L.) species. International Journal of Phytoremediation, 6(3), 269–287. https://doi.org/10.1080/16226510490496726.

  • Laureysens, I., De Temmerman, L., Hastir, T., Van Gysel, M., & Ceulemans, R. (2005). Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential. Environmental Pollution, 133(3), 541–551. https://doi.org/10.1016/j.envpol.2004.06.013.

  • Li, M. S., Luo, Y. P., & Su, Z. Y. (2007). Heavy metal concentrations in soils and plant accumulation in a restored manganese mine land in Guangxi, South China. Environmental Pollution, 147, 168–175. https://doi.org/10.1016/j.envpol.2006.08.006.

  • Madejón, P., Ciadamidaro, L., Marañón, T., & Murillo, J. M. (2013). Long-term biomonitoring of soil contamination using poplar trees: Accumulation of trace elements in leaves and fruits. International Journal of Phytoremediation, 15(6), 602–614. https://doi.org/10.1080/15226514.2012.723062.

  • Malik, R. N., Husain, S. Z., & Nazir, I. (2010). Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pakistan Journal of Botany, 42(1), 291–301 ISSN: 0556–3321.

    CAS  Google Scholar 

  • Marković, M., Zuliani, T., Belanović-Simić, S., Mataruga, Z., Kostić, O., Jarić, S., Vidmar, J., Milačič, R., Ščančar, J., Mitrović, M., & Pavlović, P. (2018). Potentially toxic elements in the riparian soils of the Sava River. Journal of Soils and Sediments, 18(12), 3404–3414. https://doi.org/10.1007/s11368-018-2071-7.

  • Marmiroli, M., Antonioli, G., Maestri, E., & Marmiroli, N. (2005). Evidence of the involvement of plant lignocellulosic structure in the sequestration of Pb: An X-ray spectroscopy-based analysis. Environmental Pollution, 134(2), 217–227. https://doi.org/10.1016/j.envpol.2004.08.004.

  • Marmiroli, N., Maestri, E., Antonioli, G., Conte, C., Monciardini, P., Marmiroli, M., & Mucchino, C. (1999). Application of synchrotron radiation X-ray fluorescence (m-SRXF) and X-ray microanalysis (SEM/EDX) for the quantitative and qualitative evaluation of trace element accumulation in woody plants. International Journal of Phytoremediation, 1(2), 168–187. https://doi.org/10.1080/15226519908500014.

  • Marschner, H. (1995). Mineral nutrition of higher plants (Second ed.). London: Academic Press Limited ISBN 0-12-473542-8.

    Google Scholar 

  • Meers, E., Vandecasteele, B., Ruttens, A., Vangronsveld, J., & Tack, F. M. G. (2007). Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environmental and Experimental Botany, 60(1), 57–68. https://doi.org/10.1016/j.envexpbot.2006.06.008.

  • Meers, E., Vervaeke, P., Tack, F. M. G., Lust, N., Verloo, M., & Lesage, E. (2003). Field trial experiment: Phytoremediation with Salix sp. on a dredged sediment disposal site in Flanders, Belgium. Remediation Journal, 13, 87–97. https://doi.org/10.1002/rem.10077.

  • Mertens, J., Vervaeke, P., De Schrijver, A., & Luyssaert, S. (2004). Metal uptake by young trees from dredged brackish sediment: Limitations and possibilities for phytoextraction and phytostabilisation. Science of the Total Environment, 326(1–3), 209–215. https://doi.org/10.1016/j.scitotenv.2003.12.010.

  • Milačič, R., Zuliani, T., Vidmar, J., Oprčkal, P., & Ščančar, J. (2017). Potentially toxic elements in water and sediments of the Sava River under extreme flow events. Science of the Total Environment, 605(606), 894–905. https://doi.org/10.1016/j.scitotenv.2017.06.260.

  • Mil-Homens, M., Stevens, R. L., Abrantes, F., & Cato, I. (2006). Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf. Continental Shelf Research, 26, 1184–1205. https://doi.org/10.1016/j.csr.2006.04.002.

  • Minkina, T. M., Nevidomskaya, D. G., Pol’shina, T. N., Fedorov, Y. A., Mandzhieva, S. S., Chaplygin, V. A., Bauer, T. V., & Burachevskaya, M. V. (2017). Heavy metals in the soil–plant system of the Don River estuarine region and the Taganrog Bay coast. Journal of Soils and Sediments, 17(5), 1474–1491. https://doi.org/10.1007/s11368-016-1381-x.

  • Naiman, R. J., & Decamps, H. (1997). The ecology of interfaces: Riparian zones. Annual Review of Ecology, Evolution, and Systematics, 28, 621–658. https://doi.org/10.1146/annurev.ecolsys.28.1.621.

  • Nečemer, M., Kump, P., Ščančar, J., Jaćimović, R., Simčič, J., Pelicon, P., Budnar, M., Jeran, Z., Pongrac, P., Regvar, M., & Vogel-Mikuš, K. (2008). Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochimica Acta Part B, 63(11), 1240–1247. https://doi.org/10.1016/j.sab.2008.07.006.

  • Oelbermann, M., & Raimbault, B. A. (2015). Riparian land-use and rehabilitation: Impact on organic matter input and soil respiration. Environmental Management, 55, 496–507. https://doi.org/10.1007/s00267-014-0410-z.

  • Ogrinc, N., Kanduč, T., & Kocman, D. (2015). Integrated approach to the evaluation of chemical dynamics and anthropogenic pollution sources in the Sava River Basin. In R. Milačič, J. Ščančar, & M. Paunović (Eds.), The Sava River (pp. 75–95). Berlin, Heidelberg: Springer-Verlag.

  • Özcan, M. (2008). Determination of the mineral compositions of some selected oil-bearing seeds and kernels using inductively coupled plasma atomic emission spectrometry (ICP-AES). Grasas y Aceites, 57(2), 211–218. https://doi.org/10.3989/gya.2006.v57.i2.39.

  • Ozen, S. A., & Yaman, M. (2016). Characterization of the absorption of histidine and lead by Juglans regia L., Platanus L., and Pinus nigra L. using high-performance liquid chromatography-mass spectrometry and inductively coupled plasma-mass spectrometry. Instrumentation Science & Technology, 44(3), 324–332. https://doi.org/10.1080/10739149.2015.1098658.

  • Pavlović, P., Marković, M., Kostić, O., Sakan, S., Đorđević, D., Perović, V., Pavlović, D., Pavlović, M., Čakmak, D., Jarić, S., Paunović, M., & Mitrović, M. (2019). Evaluation of potentially toxic element contamination in the riparian zone of the river Sava. Catena, 174, 399–412. https://doi.org/10.1016/j.catena.2018.11.034.

  • Pavlović, P., Mitrović, M., Đordević, D., Sakan, S., Slobodnik, J., Liška, I., Csanyi, B., Jarić, S., Kostić, O., Pavlović, D., Marinković, N., Tubić, B., & Paunović, M. (2016). Assessment of the contamination of riparian soil and vegetation by trace metals - a Danube River case study. Science of the Total Environment, 540, 396–409. https://doi.org/10.1016/j.scitotenv.2015.06.125.

  • Pennington, D. N., Hansel, J. R., & Gorchov, D. L. (2010). Urbanization and riparian forest woody communities: Diversity, composition, and structure within a metropolitan landscape. Biological Conservation, 143(1), 182–194. https://doi.org/10.1016/j.biocon.2009.10.002.

  • Piczak, K., Lesnievicz, A., & Zyrnicki, A. (2003). Metal concentrations in deciduous tree leaves from urban areas in Poland. Environmental Monitoring and Assessment, 86, 273–287. https://doi.org/10.1023/A:1024076504099.

  • Pugh, R. E., Dick, D. G., & Fredeen, A. L. (2002). Heavy metal (Pb, Zn, Cd, Fe and Cu) contents of plant foliage near the anvil range lead/zinc mine, Faro, Yukon territory. Ecotoxicology and Environmental Safety, 52, 273–279. https://doi.org/10.1006/eesa.2002.2201.

  • Punshon, T., & Dickinson, N. M. (1997). Acclimation of Salix to metal stress. New Phytologist, 137, 303–314. https://doi.org/10.1046/j.1469-8137.1997.00802.x.

  • Punshon, T., Gaines, K. F., Bertsch, P. M., & Burger, J. (2003). Bioavailability of uranium and nickel to vegetation in a contaminated riparian ecosystem. Environmental Toxicology and Chemistry, 22, 1146–1154. https://doi.org/10.1002/etc.5620220525.

  • Robinson, B. H., Fernandez, J. E., Madejon, P., Matarien, T., Murillo, J. M., Green, S., & Clothier, B. (2003). Phytoextraction: An assessment of biochemical and economic viability. Plant and Soil, 249(1), 117–125. https://doi.org/10.1023/A:1022586524971.

  • Sabater, S., & Elosegi, A. (2013). River conservation: Challenges and opportunities. Bilbao: Fundación BBVA ISBN: 978-84-92937-47-9.

    Google Scholar 

  • Saqib, A. N. S., Waseem, A., Khan, A. F., Mahmood, Q., Khan, A., Habib, A., & Khan, A. R. (2013). Arsenic bioremediation by low cost materials derived from blue pine (Pinus wallichiana) and walnut (Juglans regia). Ecological Engineering, 51, 88–94. https://doi.org/10.1016/j.ecoleng.2012.12.063.

  • Sawidis, T., Breuste, J., Mitrović, M., Pavlović, P., & Tsigaridas, K. (2011). Trees as bioindicator of heavy metal pollution in three European cities. Environmental Pollution, 159(12), 3560–3570. https://doi.org/10.1016/j.envpol.2011.08.008.

  • Sawidis, T., Chettri, M. K., Stratis, J., Papaioannou, A., & Zachariadis, G. (2002). A study of metal distribution from lignite fuels using trees as biological monitors. Ecotoxicology and Environmental Safety, 48(1), 27–35. https://doi.org/10.1006/eesa.2000.2001.

  • Schulz-Zunkel, C., Krueger, F., Rupp, H., Meissner, R., Gruber, B., Gerisch, M., & Bork, H. R. (2013). Spatial and seasonal distribution of trace metals in floodplain soils. A case study with the middle Elbe River, Germany. Geoderma, 211–212, 128–137. https://doi.org/10.1016/j.geoderma.2013.07.010.

  • Schwarz, U. (2016). Sava white book. The river Sava: Threats and restoration potential. Radolfzell/Wien: EuroNatur/Riverwatch.

    Google Scholar 

  • Shu, W. S., Ye, Z. H., Lan, C. Y., Zhang, Z. Q., & Wong, M. H. (2002). Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environmental Pollution, 120, 445–453. https://doi.org/10.1016/S0269-7491(02)00110-0.

  • Simić, V., Petrović, A., Erg, B., Dimović, D., Makovinska, J., Karadžić, B., & Paunović, M. (2015). Indicative status assessment, biodiversity conservation and protected areas within the Sava River Basin. In R. Milačič, J. Ščančar, & M. Paunović (Eds.), The Sava River (pp. 453–500). Dodrecht: Springer ISBN 978-3-662-44034-6.

  • Stobrawa, K., & Lorenc-Plucińska, G. (2007). Changes in antioxidant enzyme activity in the fine roots of black poplar (Populus nigra L.) and cottonwood (Populus deltoides Bartr. Ex Marsch) in a heavy-metal-polluted environment. Plant and Soil, 298(1–2), 57–68. https://doi.org/10.1007/s11104-007-9336-z.

  • Sunil, C., Somashekar, R. K., & Nagaraja, B. C. (2010). Riparian vegetation assessment of Cauvery River basin of South India. Environmental Monitoring and Assessment, 170(1–4), 545–553. https://doi.org/10.1007/s10661-009-1256-3.

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–627. https://doi.org/10.1007/s002540050473.

  • Swarzenski, P. W., Baskaran, M., Rosenbauer, P. J., & Orem, W. H. (2006). Historical trace element distribution in sediments from the Mississippi River delta. Estuaries and Coasts, 29(6), 1094–1107. https://doi.org/10.1007/BF02781812.

  • Ščančar, J., Heath, E., Zuliani, T., Horvat, M., Kotnik, J., Perko, P., & Milačič, R. (2015). Elements and persistent organic pollutants in the sediments of the Sava River. In R. Milačič, J. Ščančar, & M. Paunović (Eds.), The Sava River (pp. 95–123). Dodrecht: Springer ISBN 978-3-662-44034-6.

    Google Scholar 

  • Tang, T., & Miller, D. M. (1991). Growth and tissue composition of rice grown in soil treated with inorganic copper, nickel, and arsenic. Communications in Soil Science and Plant Analysis, 22(19–20), 2037–2045. https://doi.org/10.1080/00103629109368556.

  • Tošić, S. B., Mitić, S. S., Velimirović, D. S., Stojanović, G. S., Pavlović, A. N., & Pecev-Marinković, E. T. (2014). Elemental composition of edible nuts: Fast optimization and validation procedure of an ICP-OES method. Journal of the Science of Food and Agriculture, 95(11), 2271–2278. https://doi.org/10.1002/jsfa.6946.

  • Vandecasteele, B., De Vos, B., & Tack, F. M. G. (2002). Cadmium and zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites. Science of the Total Environment, 299(1–3), 191–205. https://doi.org/10.1016/S0048-9697(02)00275-9.

  • Vandecasteele, B., Meers, E., Vervaeke, P., De Vos, B., Quataert, P., & Tack, F. M. G. (2005). Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere, 58(8), 995–1002. https://doi.org/10.1016/j.chemosphere.2004.09.062.

  • Vysloužilová, M., Tlustoš, P., Száková, J., & Pavlíková, D. (2003). As, Cd, Pb and Zn uptake by Salix spp. clones grown in soils enriched by high loads of these elements. Plant, Soil and Environment, 49(5), 191–196. https://doi.org/10.17221/4112-PSE.

  • Wu, F., Yang, W., Zhang, J., & Zhou, L. (2010). Cadmium accumulation and growth responses of a poplar (Populus deltoides x Populus nigra) in cadmium contaminated purple soil and alluvial soil. Journal of Hazardous Materials, 177, 268–273. https://doi.org/10.1016/j.jhazmat.2009.12.028.

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2–3), 456–464. https://doi.org/10.1016/j.scitotenv.2006.01.016.

  • Zacchini, M., Iori, V., Mugnozza, G. S., Pietrini, F., & Massacci, A. (2011). Cadmium accumulation and tolerance in Populus nigra and Salix alba. Biologia Plantarum, 55(2), 383–386. https://doi.org/10.1007/s10535-011-0060-4.

  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27, 715–721. https://doi.org/10.2134/jeq1998.00472425002700030032x.

  • Zimmer, D., Baum, C., Meissner, R., & Leinweber, P. (2012). Soil-ecological evaluation of willows in a floodplain. Journal of Soil Science and Plant Nutrition, 175(2), 245–252. https://doi.org/10.1002/jpln.201100063.

  • Zhang, H., Cui, B., & Zhang, K. (2011). Heavy metal distribution of natural and reclaimed tidal riparian wetlands in south estuary, China. Journal of Environmental Sciences, 23(12), 1937–1946. https://doi.org/10.1016/S1001-0742(10)60644-4.

  • Zovko, M., & Romić, M. (2011). Soil contamination by trace metals: Geochemical behavior as an element of risk assessment. In I. A. Dar (Ed.), Earth and environmental sciences (pp. 437–456). Rijeka: InTech. https://doi.org/10.5772/25448.

Download references

Author’s declaration

This article is original and has not been previously published, in whole or in part. This work is not under consideration by any other journal elsewhere, and its publication is approved by all authors. In case of the acceptance of this paper, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright holder.

Funding

This work has been supported by the European Communities 7th Framework Programme Funding under Grant agreement no. 603629-ENV-2013-6.2.1-Globaqua. The preparation of this manuscript was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant no. 173018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorana Mataruga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mataruga, Z., Jarić, S., Marković, M. et al. Evaluation of Salix alba, Juglans regia and Populus nigra as biomonitors of PTEs in the riparian soils of the Sava River. Environ Monit Assess 192, 131 (2020). https://doi.org/10.1007/s10661-020-8085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8085-9

Keywords

Navigation