Skip to main content

Advertisement

Log in

Fast and effective simultaneous determination of metals in soil samples by ultrasound-assisted extraction and flame atomic absorption spectrometry: assessment of trace elements contamination in agricultural and native forest soils from Paraná - Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study proposes a simple and effective method for determination of Al, Cd, Cu, Ni, and Zn in soil samples, associating ultrasound-assisted extraction and flame atomic absorption spectrometry (FAAS). Ultrasound-assisted extraction conditions were optimized using a central composite design. This method required small volumes of HCl, HNO3, and HF as an extraction solvent blend to ensure effective analyte extraction. Limits of detection and quantification were determined to assess the minimum accurate concentration of the studied elements that can be detected and quantified in a soil sample. Therefore, the ultrasound-assisted extraction was concluded as a simple and straightforward pretreatment technique to determine Al, Cd, Cu, Ni, and Zn concentrations in soil samples. Eight sites of agricultural and native forest areas of the city of Ponta Grossa and Guarapuava, State of Paraná, Brazil, were evaluated for metals, and compared with the reference values for trace elements provided by the Brazilian National Environment Council. Environmental assessment of soils from those eight sites was accomplished through Igeo, EF, CF, and PLI parameters, which aimed at the evaluation of agricultural sites in comparison with adjacent natural forest sites with no history of anthropogenic mobilization to determine the degree of the contribution of anthropogenic sources to metal concentrations. According to the Igeo, EF, and CF parameters, all sites were classified as unpolluted to moderately polluted and none or minor enrichment due to anthropogenic activities were noticed. PLI parameter evaluated the concentration of all studied metals in soils to stipulate an order of contamination, which was concluded as site 8 <site 4 <site 3 <site 7 <site 2 <site 6 <site 1 <site 5 for the sites under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdullahi, M. S. (2015). Chapter 18 - soil contamination, remediation and plants: prospects and challenges. In: Hakeem, K. R., Sabir, M., Öztürk, M., Mermut, A.R. (Eds.). Soil Remediation and Plants, Academic Press, 525–546, https://doi.org/10.1016/B978-0-12-799937-1.00018-8.

  • Ahmad, W., Najeeb, U., & Zia, M. H. (2015). Chapter 2 - soil contamination with metals: sources, types and implications. In K. R. Hakeem, M. Sabir, M. Öztürk, & A. R. Mermut (Eds.), Soil remediation and plants (pp. 37–61). San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-799937-1.00002-4.

    Chapter  Google Scholar 

  • Ali, L., Rashid, A., Khattak, S. A., Zeb, M., Jehan, S. (2019). Geochemical control of potential toxic elements (PTEs), associated risk exposure and source apportionment of agricultural soil in Southern Chitral, Pakistan. Microchemical Journal. 147, 516–523, https://doi.org/10.1016/j.microc.2019.03.034.

  • Alloway, B. J. (1995). Heavy metals in soils. Londres: Blackie Acad. Prof.

    Book  Google Scholar 

  • Antony, J. (2014). 4 - a systematic methodology for design of experiments. In: Antony, J. (Ed.). Design of experiments for engineers and scientists (second edition), Elsevier, 33-50, https://doi.org/10.1016/B978-0-08-099417-8.00004-3.

  • Baltas, H., Sirin, M., Gökbayrak, E., Ozcelik, A. E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere. 241. https://doi.org/10.1016/j.chemosphere.2019.125015.

  • Bendicho C., Lavilla, I. (2013). Ultrasound-assisted metal extractions. In: Reedijk, J. (Ed.) Reference module in chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, https://doi.org/10.1016/B978-0-12-409547-2.04953-2.

  • Bettinelli, M., Beone, G. N., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta, 424(2). https://doi.org/10.1016/S0003-2670(00)01123-5.

  • Brasil. (2009). Resolução no 420, de 28 de dezembro de 2009. In Publicado no DOU n o 249, de 30/12/2009. Conselho Nacional do: Meio Ambiente (CONAMA).

    Google Scholar 

  • Cachada, A., Rocha-Santos, T., & Duarte, A. C. (2018). Chapter 1 - soil and pollution: an introduction to the Main issues (pp. 1–28). Soil pollution: Academic Press. https://doi.org/10.1016/B978-0-12-849873-6.00001-7.

    Book  Google Scholar 

  • Callao, M. P. (2014). Multivariate experimental design in environmental analysis. TrAC, Trends Analytical Chemistry, 62, 86–92. https://doi.org/10.1016/j.trac.2014.07.009.

    Article  CAS  Google Scholar 

  • Castro, L., Capote, F. P. (Ed.). (2007). Chapter 3 ultrasound-assisted sample digestion. In: Techniques and instrumentation in analytical chemistry, Elsevier, 26, 69–97, https://doi.org/10.1016/S0167-9244(07)80019-9.

  • Doula, M. K., Sarris, A. (2016). Chapter 4 - soil environment. In: Poulopoulos, S. G., Inglezakis, V. J. (Ed). Environment and development, 213-286, https://doi.org/10.1016/B978-0-444-62733-9.00004-6

  • Frena, M., Quadros, D. P. C., Castilho, I. N. B., Gois, J. S., Borges, D. L. G., Welz, B., & Madureira, L. A. S. (2014). A novel extraction-based procedure for the determination of trace elements in estuarine sediment samples by ICP-MS. Microchemical Journal, 117, 1–6. https://doi.org/10.1016/j.microc.2014.05.014.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • IUPAC. (1978). Nomenclature, symbols, units and their usage in spectrochemical analysis—II: data interpretation analytical chemistry division. Spectrochimica Acta Part B, 33(6), 241–245. https://doi.org/10.1016/0584-8547(78)80044-5.

    Article  Google Scholar 

  • Kabata-Pendias, A. (2000). Trace elements in soils and plants. 3ed., CRC press, Boca Raton, https://doi.org/10.1201/9781420039900

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. New York: Springer.

    Book  Google Scholar 

  • Kazi, T. G., Afridi, H. I., Bhatti, M., & Akhtar, A. (2019). A rapid ultrasonic energy assisted preconcentration method for simultaneous extraction of lead and cadmium in various cosmetic brands using deep eutectic solvent: a multivariate study. Ultrasonics Sonochemistry, 51, 40–48. https://doi.org/10.1016/j.ultsonch.2018.10.016.

    Article  CAS  Google Scholar 

  • Klaassen, C. D. (2008). Unit 5 – toxic agents. In: Klaassen, C. D. (Ed). Casarett & Doull’s toxicology: the basic science of poisons, 7 ed., McGraw-Hill, 881-111.

  • Kline, W. E., & Fogler, H. S. (1981). Dissolution kinetics: catalysis by strong acids. Journal of Colloid Interface Sciences, 82(1). https://doi.org/10.1016/0021-9797(81)90127-2.

  • La Calle, I., Cabaleiro, N., Costas, M., Pena, F., Gil, S., Lavilla, I., & Bendicho, C. (2011). Ultrasound-assisted extraction of gold and silver from environmental samples using different extractants followed by electrothermal-atomic absorption spectrometry. Microchemical Journal, 97(2), 93–100. https://doi.org/10.1016/j.microc.2010.07.011.

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2000). Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research., 2(5), 1–25.

    Google Scholar 

  • Li, H., Qian, X., Hu, W., Wang, Y., Gao, H. (2013). Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Science of the Total Environment. 456-457, 212–221, https://doi.org/10.1016/j.scitotenv.2013.03.094.

  • Li, X., Zhang, J., Gong, Y., Liu, Q., Yang, S., Ma, J., Zhao, L., & Hou, H. (2020). Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere., 244. https://doi.org/10.1016/j.chemosphere.2019.125516.

  • Matong, J. M., Nyaba, L., & Nomngongo, P. N. (2016). Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasma mass spectrometric determination. Chemosphere., 154, 249–257. https://doi.org/10.1016/j.chemosphere.2016.03.123.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine river. GeoJournal, 2(3), 108–118.

    Google Scholar 

  • Muller, G. (1981). Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflüsse. Chemiker-Zeitung, 6, 157–164.

    Google Scholar 

  • Neto, B. B., Scarminio, I. S., Bruns, R. E. (2010). Como Fazer Experimentos - Aplicações na Ciência e na Indústria, 4 ed., Bookman.

  • Özdemir, S., Mohamedsaid, S. A., Kılınç, E., & Soylak, M. (2019). Magnetic solid phase extractions of Co(II) and Hg(II) by using magnetized C. micaceus from water and food samples. Food Chemistry., 271, 232–238. https://doi.org/10.1016/j.foodchem.2018.07.067.

    Article  CAS  Google Scholar 

  • Paula, C. E. R., Caldas, L. F. S., Brum, D. M., & Cassella, R. J. (2013). Development of a focused ultrasound-assisted extraction method for the determination of trace concentrations of Cr and Mn in pharmaceutical formulations by ETAAS. Journal of Pharmaceutical and Biomedical Analysis, 74, 284–229. https://doi.org/10.1016/j.jpba.2012.11.013.

    Article  CAS  Google Scholar 

  • Picó, Y. (2013). Ultrasound-assisted extraction for food and environmental samples. TrAC, Trends in Analytical Chemistry, 43, 84–99. https://doi.org/10.1016/j.trac.2012.12.005.

    Article  CAS  Google Scholar 

  • Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 40(11), 968–980. https://doi.org/10.1016/S0025-326X(00)00039-4.

    Article  CAS  Google Scholar 

  • Rutkowska, M., Namieśnik, J., Konieczka, P. (2017). Chapter 10 - ultrasound-assisted extraction. In: Pena-Pereira, F.; Tobiszewski, M. The application of green solvents in separation processes, Elsevier, 301-324, https://doi.org/10.1016/B978-0-12-805297-6.00010-3

  • Santos, S. N., & Alleoni, L. (2013). Reference values for heavy metals in soils of the Brazilian agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment., 185, 5737–5748. https://doi.org/10.1007/s10661-012-2980-7.

    Article  CAS  Google Scholar 

  • Saucedo-Velez, A. A., Hinojosa-Reyes, L., Villanueva-Rodríguez, M., Caballero-Quintero, A., Hernández-Ramírez, A., & Guzmán-Mar, J. L. (2017). Speciation analysis of organoarsenic compounds in livestock feed by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry. Food Chemistry., 232, 493–500. https://doi.org/10.1016/j.foodchem.2017.04.012.

    Article  CAS  Google Scholar 

  • Skoog, A. D., West, D. M., Holler, F. J., & Crouch, R. S. (2006). Fundamentos de Química Analítica. São Paulo: Editora Thomson.

    Google Scholar 

  • Tadeo, J. L., Sánchez-Brunete, C., Albero, B., & García-Valcárcel, A. I. (2010). Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. Journal of Chromatography A., 1217(16), 2415–2440. https://doi.org/10.1016/j.chroma.2009.11.066.

    Article  CAS  Google Scholar 

  • Tazaki, K., Lindenmayer, Z. G., & Fyfe, W. S. (1988). Formation of ultra-thin Cu/1bS films on minerals, a weathering product from silicate-facies iron formation, Salobo, Carajas, Brazil. Chemical Geology., 67(3–4), 285–294. https://doi.org/10.1016/0009-2541(88)90134-9.

    Article  CAS  Google Scholar 

  • Tiwari, B. K. (2015). Ultrasound: a clean, green extraction technology. TrAC, Trends in Analytical Chemistry., 71. https://doi.org/10.1016/j.trac.2015.04.013.

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in assessment of heavy metals in estuaries and the formation of pollution index. Helgoland Marine Research., 33, 566–575. https://doi.org/10.1007/BF02414780.

    Article  Google Scholar 

  • Wang, J., & Chen, C. (2006). Biosorbents for heavy metals removal and their future. Biotechnology Advances., 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2006.03.001.

    Article  CAS  Google Scholar 

  • Yan, G., Mao, L., Liu, S., Mao, Y., Ye, H., Huang, T., Li, F.; Chen, L. (2018). Enrichment and sources of trace metals in roadside soils in Shanghai, China: a case study of two urban/rural roads. Science of the Total Environment. 631-632, 942–950, https://doi.org/10.1016/j.scitotenv.2018.02.340.

  • Yang, P., Zhou, R., Zhang, W., Yi, R., Tang, S., Guo, L., Hao, Z., Li, X., Lu, Y., & Zeng, X. (2019). High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy. Food Chemistry., 272, 323–328. https://doi.org/10.1016/j.foodchem.2018.07.214.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Chemical Engineering at the Federal University of Technology – Paraná, José Alfredo Santos for supplying the soil samples used in the analytical application, Fundação Araucária, CAPES, CNPq, and Federal University of Santa Catarina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Cristina Crominski da Silva Medeiros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Medeiros, D.C.C., Piechontcoski, F., da Rocha Watanabe, E.R.L. et al. Fast and effective simultaneous determination of metals in soil samples by ultrasound-assisted extraction and flame atomic absorption spectrometry: assessment of trace elements contamination in agricultural and native forest soils from Paraná - Brazil. Environ Monit Assess 192, 111 (2020). https://doi.org/10.1007/s10661-020-8065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8065-0

Keywords

Navigation