Fast and effective simultaneous determination of metals in soil samples by ultrasound-assisted extraction and flame atomic absorption spectrometry: assessment of trace elements contamination in agricultural and native forest soils from Paraná - Brazil

Abstract

This study proposes a simple and effective method for determination of Al, Cd, Cu, Ni, and Zn in soil samples, associating ultrasound-assisted extraction and flame atomic absorption spectrometry (FAAS). Ultrasound-assisted extraction conditions were optimized using a central composite design. This method required small volumes of HCl, HNO3, and HF as an extraction solvent blend to ensure effective analyte extraction. Limits of detection and quantification were determined to assess the minimum accurate concentration of the studied elements that can be detected and quantified in a soil sample. Therefore, the ultrasound-assisted extraction was concluded as a simple and straightforward pretreatment technique to determine Al, Cd, Cu, Ni, and Zn concentrations in soil samples. Eight sites of agricultural and native forest areas of the city of Ponta Grossa and Guarapuava, State of Paraná, Brazil, were evaluated for metals, and compared with the reference values for trace elements provided by the Brazilian National Environment Council. Environmental assessment of soils from those eight sites was accomplished through Igeo, EF, CF, and PLI parameters, which aimed at the evaluation of agricultural sites in comparison with adjacent natural forest sites with no history of anthropogenic mobilization to determine the degree of the contribution of anthropogenic sources to metal concentrations. According to the Igeo, EF, and CF parameters, all sites were classified as unpolluted to moderately polluted and none or minor enrichment due to anthropogenic activities were noticed. PLI parameter evaluated the concentration of all studied metals in soils to stipulate an order of contamination, which was concluded as site 8 <site 4 <site 3 <site 7 <site 2 <site 6 <site 1 <site 5 for the sites under study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdullahi, M. S. (2015). Chapter 18 - soil contamination, remediation and plants: prospects and challenges. In: Hakeem, K. R., Sabir, M., Öztürk, M., Mermut, A.R. (Eds.). Soil Remediation and Plants, Academic Press, 525–546, https://doi.org/10.1016/B978-0-12-799937-1.00018-8.

  2. Ahmad, W., Najeeb, U., & Zia, M. H. (2015). Chapter 2 - soil contamination with metals: sources, types and implications. In K. R. Hakeem, M. Sabir, M. Öztürk, & A. R. Mermut (Eds.), Soil remediation and plants (pp. 37–61). San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-799937-1.00002-4.

    Google Scholar 

  3. Ali, L., Rashid, A., Khattak, S. A., Zeb, M., Jehan, S. (2019). Geochemical control of potential toxic elements (PTEs), associated risk exposure and source apportionment of agricultural soil in Southern Chitral, Pakistan. Microchemical Journal. 147, 516–523, https://doi.org/10.1016/j.microc.2019.03.034.

  4. Alloway, B. J. (1995). Heavy metals in soils. Londres: Blackie Acad. Prof.

    Google Scholar 

  5. Antony, J. (2014). 4 - a systematic methodology for design of experiments. In: Antony, J. (Ed.). Design of experiments for engineers and scientists (second edition), Elsevier, 33-50, https://doi.org/10.1016/B978-0-08-099417-8.00004-3.

  6. Baltas, H., Sirin, M., Gökbayrak, E., Ozcelik, A. E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere. 241. https://doi.org/10.1016/j.chemosphere.2019.125015.

  7. Bendicho C., Lavilla, I. (2013). Ultrasound-assisted metal extractions. In: Reedijk, J. (Ed.) Reference module in chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, https://doi.org/10.1016/B978-0-12-409547-2.04953-2.

  8. Bettinelli, M., Beone, G. N., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta, 424(2). https://doi.org/10.1016/S0003-2670(00)01123-5.

  9. Brasil. (2009). Resolução no 420, de 28 de dezembro de 2009. In Publicado no DOU n o 249, de 30/12/2009. Conselho Nacional do: Meio Ambiente (CONAMA).

    Google Scholar 

  10. Cachada, A., Rocha-Santos, T., & Duarte, A. C. (2018). Chapter 1 - soil and pollution: an introduction to the Main issues (pp. 1–28). Soil pollution: Academic Press. https://doi.org/10.1016/B978-0-12-849873-6.00001-7.

    Google Scholar 

  11. Callao, M. P. (2014). Multivariate experimental design in environmental analysis. TrAC, Trends Analytical Chemistry, 62, 86–92. https://doi.org/10.1016/j.trac.2014.07.009.

    CAS  Article  Google Scholar 

  12. Castro, L., Capote, F. P. (Ed.). (2007). Chapter 3 ultrasound-assisted sample digestion. In: Techniques and instrumentation in analytical chemistry, Elsevier, 26, 69–97, https://doi.org/10.1016/S0167-9244(07)80019-9.

  13. Doula, M. K., Sarris, A. (2016). Chapter 4 - soil environment. In: Poulopoulos, S. G., Inglezakis, V. J. (Ed). Environment and development, 213-286, https://doi.org/10.1016/B978-0-444-62733-9.00004-6

  14. Frena, M., Quadros, D. P. C., Castilho, I. N. B., Gois, J. S., Borges, D. L. G., Welz, B., & Madureira, L. A. S. (2014). A novel extraction-based procedure for the determination of trace elements in estuarine sediment samples by ICP-MS. Microchemical Journal, 117, 1–6. https://doi.org/10.1016/j.microc.2014.05.014.

    CAS  Article  Google Scholar 

  15. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  16. IUPAC. (1978). Nomenclature, symbols, units and their usage in spectrochemical analysis—II: data interpretation analytical chemistry division. Spectrochimica Acta Part B, 33(6), 241–245. https://doi.org/10.1016/0584-8547(78)80044-5.

    Article  Google Scholar 

  17. Kabata-Pendias, A. (2000). Trace elements in soils and plants. 3ed., CRC press, Boca Raton, https://doi.org/10.1201/9781420039900

  18. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. New York: Springer.

    Google Scholar 

  19. Kazi, T. G., Afridi, H. I., Bhatti, M., & Akhtar, A. (2019). A rapid ultrasonic energy assisted preconcentration method for simultaneous extraction of lead and cadmium in various cosmetic brands using deep eutectic solvent: a multivariate study. Ultrasonics Sonochemistry, 51, 40–48. https://doi.org/10.1016/j.ultsonch.2018.10.016.

    CAS  Article  Google Scholar 

  20. Klaassen, C. D. (2008). Unit 5 – toxic agents. In: Klaassen, C. D. (Ed). Casarett & Doull’s toxicology: the basic science of poisons, 7 ed., McGraw-Hill, 881-111.

  21. Kline, W. E., & Fogler, H. S. (1981). Dissolution kinetics: catalysis by strong acids. Journal of Colloid Interface Sciences, 82(1). https://doi.org/10.1016/0021-9797(81)90127-2.

  22. La Calle, I., Cabaleiro, N., Costas, M., Pena, F., Gil, S., Lavilla, I., & Bendicho, C. (2011). Ultrasound-assisted extraction of gold and silver from environmental samples using different extractants followed by electrothermal-atomic absorption spectrometry. Microchemical Journal, 97(2), 93–100. https://doi.org/10.1016/j.microc.2010.07.011.

    CAS  Article  Google Scholar 

  23. Lasat, M. M. (2000). Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research., 2(5), 1–25.

    Google Scholar 

  24. Li, H., Qian, X., Hu, W., Wang, Y., Gao, H. (2013). Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Science of the Total Environment. 456-457, 212–221, https://doi.org/10.1016/j.scitotenv.2013.03.094.

  25. Li, X., Zhang, J., Gong, Y., Liu, Q., Yang, S., Ma, J., Zhao, L., & Hou, H. (2020). Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere., 244. https://doi.org/10.1016/j.chemosphere.2019.125516.

  26. Matong, J. M., Nyaba, L., & Nomngongo, P. N. (2016). Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasma mass spectrometric determination. Chemosphere., 154, 249–257. https://doi.org/10.1016/j.chemosphere.2016.03.123.

    CAS  Article  Google Scholar 

  27. Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine river. GeoJournal, 2(3), 108–118.

    Google Scholar 

  28. Muller, G. (1981). Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflüsse. Chemiker-Zeitung, 6, 157–164.

    Google Scholar 

  29. Neto, B. B., Scarminio, I. S., Bruns, R. E. (2010). Como Fazer Experimentos - Aplicações na Ciência e na Indústria, 4 ed., Bookman.

  30. Özdemir, S., Mohamedsaid, S. A., Kılınç, E., & Soylak, M. (2019). Magnetic solid phase extractions of Co(II) and Hg(II) by using magnetized C. micaceus from water and food samples. Food Chemistry., 271, 232–238. https://doi.org/10.1016/j.foodchem.2018.07.067.

    CAS  Article  Google Scholar 

  31. Paula, C. E. R., Caldas, L. F. S., Brum, D. M., & Cassella, R. J. (2013). Development of a focused ultrasound-assisted extraction method for the determination of trace concentrations of Cr and Mn in pharmaceutical formulations by ETAAS. Journal of Pharmaceutical and Biomedical Analysis, 74, 284–229. https://doi.org/10.1016/j.jpba.2012.11.013.

    CAS  Article  Google Scholar 

  32. Picó, Y. (2013). Ultrasound-assisted extraction for food and environmental samples. TrAC, Trends in Analytical Chemistry, 43, 84–99. https://doi.org/10.1016/j.trac.2012.12.005.

    CAS  Article  Google Scholar 

  33. Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 40(11), 968–980. https://doi.org/10.1016/S0025-326X(00)00039-4.

    CAS  Article  Google Scholar 

  34. Rutkowska, M., Namieśnik, J., Konieczka, P. (2017). Chapter 10 - ultrasound-assisted extraction. In: Pena-Pereira, F.; Tobiszewski, M. The application of green solvents in separation processes, Elsevier, 301-324, https://doi.org/10.1016/B978-0-12-805297-6.00010-3

  35. Santos, S. N., & Alleoni, L. (2013). Reference values for heavy metals in soils of the Brazilian agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment., 185, 5737–5748. https://doi.org/10.1007/s10661-012-2980-7.

    CAS  Article  Google Scholar 

  36. Saucedo-Velez, A. A., Hinojosa-Reyes, L., Villanueva-Rodríguez, M., Caballero-Quintero, A., Hernández-Ramírez, A., & Guzmán-Mar, J. L. (2017). Speciation analysis of organoarsenic compounds in livestock feed by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry. Food Chemistry., 232, 493–500. https://doi.org/10.1016/j.foodchem.2017.04.012.

    CAS  Article  Google Scholar 

  37. Skoog, A. D., West, D. M., Holler, F. J., & Crouch, R. S. (2006). Fundamentos de Química Analítica. São Paulo: Editora Thomson.

    Google Scholar 

  38. Tadeo, J. L., Sánchez-Brunete, C., Albero, B., & García-Valcárcel, A. I. (2010). Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. Journal of Chromatography A., 1217(16), 2415–2440. https://doi.org/10.1016/j.chroma.2009.11.066.

    CAS  Article  Google Scholar 

  39. Tazaki, K., Lindenmayer, Z. G., & Fyfe, W. S. (1988). Formation of ultra-thin Cu/1bS films on minerals, a weathering product from silicate-facies iron formation, Salobo, Carajas, Brazil. Chemical Geology., 67(3–4), 285–294. https://doi.org/10.1016/0009-2541(88)90134-9.

    CAS  Article  Google Scholar 

  40. Tiwari, B. K. (2015). Ultrasound: a clean, green extraction technology. TrAC, Trends in Analytical Chemistry., 71. https://doi.org/10.1016/j.trac.2015.04.013.

  41. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in assessment of heavy metals in estuaries and the formation of pollution index. Helgoland Marine Research., 33, 566–575. https://doi.org/10.1007/BF02414780.

    Article  Google Scholar 

  42. Wang, J., & Chen, C. (2006). Biosorbents for heavy metals removal and their future. Biotechnology Advances., 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2006.03.001.

    CAS  Article  Google Scholar 

  43. Yan, G., Mao, L., Liu, S., Mao, Y., Ye, H., Huang, T., Li, F.; Chen, L. (2018). Enrichment and sources of trace metals in roadside soils in Shanghai, China: a case study of two urban/rural roads. Science of the Total Environment. 631-632, 942–950, https://doi.org/10.1016/j.scitotenv.2018.02.340.

  44. Yang, P., Zhou, R., Zhang, W., Yi, R., Tang, S., Guo, L., Hao, Z., Li, X., Lu, Y., & Zeng, X. (2019). High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy. Food Chemistry., 272, 323–328. https://doi.org/10.1016/j.foodchem.2018.07.214.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Chemical Engineering at the Federal University of Technology – Paraná, José Alfredo Santos for supplying the soil samples used in the analytical application, Fundação Araucária, CAPES, CNPq, and Federal University of Santa Catarina.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deborah Cristina Crominski da Silva Medeiros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva Medeiros, D.C.C., Piechontcoski, F., da Rocha Watanabe, E.R.L. et al. Fast and effective simultaneous determination of metals in soil samples by ultrasound-assisted extraction and flame atomic absorption spectrometry: assessment of trace elements contamination in agricultural and native forest soils from Paraná - Brazil. Environ Monit Assess 192, 111 (2020). https://doi.org/10.1007/s10661-020-8065-0

Download citation

Keywords

  • Trace elements
  • Soil
  • Ultrasound-assisted extraction
  • Flame atomic absorption spectrometry
  • Central composite design
  • Environmental analysis