Skip to main content

Advertisement

Log in

Long-term grazing exclosure: implications on water erosion and soil physicochemical properties (case study: Bozdaghin rangelands, North Khorasan, Iran)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Grazing exclosure (GE) is used to improve rangelands in the dry area of the world, so it is important to investigate its effects on soil physicochemical and erodibility properties. This study was conducted to evaluate the effect of long-term GE on the physicochemical and erodibility properties of soil and vegetation as compared with open grazing (OG) areas in Bozdaghi region of North Khorasan province, Iran. Soil and vegetation data were sampled from two sites in the grazing exclosure and the open grazing in early autumn in a randomized complete block design with three replications. Therefore, in each area (GE and OG), three transects of 500-m length and 200-m intervals) were set up. Along each transect, five soil samples were taken at the depths of 0–15 and 15–30 cm in a random-systematic method (15 soil samples in each area) and transferred to the laboratory. In the laboratory, some soil physicochemical properties such as saturation percentage, soil texture (clay, silt, and sand), bulk density, porosity, percentage of soil organic matter (SOM), total nitrogen (TN), exchangeable sodium, potassium, pH, and electrical conductivity (EC) were measured and Soil Erodibility Index (SEI) was calculated by using the modified clay ratio relation. After installing the transects (with a length of 50 m) in three blocks in each area, the parameters of species composition and canopy cover were investigated by the linear-contact method. Data analysis was performed by using an independent t test on Statistical Package for Social Sciences (SPSS) v. 23 software. The results indicate that the application of GE in the Bozdaghi area has a significant positive effect on soil physicochemical properties (P < 0.05). Also, the application of GE has increased the amount of SOM and TN in the surface layer of the soil by about twice as much as the OG pastures. Due to these changes, during 20 years in the GE area, the effects of GE can be positively assessed. According to the obtained results, especially the positive changes in vegetation and the soil physicochemical and erodibility properties, it is recommended to execute the GE plan in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarons, S. R., Hosseini, H. M., Dorling, L., & Gourley, C. J. P. (2004). Dung decomposition in temperate dairy pastures as a contribution to plant available soil phosphorus. Australian Journal of Soil Research, 42(1), 115–123. https://doi.org/10.1071/SR03009.

    Article  CAS  Google Scholar 

  • Adler, P. B., Raff, D. A., & Lauenroth, W. K. (2001). The effect of grazing on the spatial heterogeneity of vegetation. Oecologia, 128, 465–479. https://doi.org/10.1007/s004420100737.

    Article  CAS  Google Scholar 

  • Aeinebeygi, S., & Khaleghi, M. R. (2016). An assessment of biennial enclosure effects on range production, condition and trend (case study: Taftazan Rangeland, Shirvan). International Journal of Forest, Soil and Erosion (IJFSE), 6(2), 33–40.

    Google Scholar 

  • Al-Seekh, S. H., Mohammad, A. G., & Amro, Y. A. (2009). Effect of grazing on soil properties at southern part of west bank rangeland. Hebron University Research Journal, 4(1), 35–53 https://digitalcommons.aaru.edu.jo/hujr_a/vol4/iss1/4.

    Google Scholar 

  • Angassa, A. (2014). Effects of grazing intensity and bush encroachment on herbaceous species and rangeland condition in southern Ethiopia. Land Degradation & Development, 25(5), 438–451. https://doi.org/10.1002/ldr.2160.

    Article  Google Scholar 

  • Archer, S.R., & Smeins, F.E. (1991). Ecosystem-level processes. Chap. 5 In Heitschmidt, R.K. and J.W. Stuth (eds.). Grazing management: an ecological perspective. Timber Press, Portland. 257 pp.

  • Aryafar, A., Khosravi, V., Zarepourfard, H., & Rooki, R. (2019). Evolving genetic programming and other AI-based models for estimating groundwater quality parameters of the Khezri plain, Eastern Iran. Environmental Earth Sciences, 78(69). https://doi.org/10.1007/s12665-019-8092-8.

  • Asadi, E., Isazadeh, M., Samadianfard, S., Ramli, M. F., Mosavi, A., Nabipour, N., et al. (2020). Groundwater quality assessment for sustainable drinking and irrigation. Sustainability, 12(1), 177. https://doi.org/10.3390/su12010177.

    Article  CAS  Google Scholar 

  • Bagheri, R., Mohseni Saravi, M., & Chaichi, M. R. (2009). Effect of grazing intensity on some soil chemical properties in a semi-arid region (case study: Khabr National Park and near rangelands). Rangeland, 3(3), 398–412.

    Google Scholar 

  • Barger, N., Ojima, D. S., Belnap, J., & Wang, S. (2004). Changes in plant functional groups, litter quality, and soil carbon and nitrogen mineralization with sheep grazing in Inner Mongolian grassland. Rangeland Ecology & Management, 57(6), 613–619. https://doi.org/10.2111/1551-5028(2004)057[0613:CIPFGL]2.0.CO;2.

    Article  Google Scholar 

  • Berg, W. A., Bradford, J. A., & Sims, P. L. (1997). Long – term nitrogen and vegetation change on Sandhill rangeland. Journal of Range Management, 50, 482–486.

    Article  Google Scholar 

  • Blackburn, W., Knight, R.W., & Wood, M.K., (1982). Impacts of grazing on watersheds. Rangelands, 5(3), 123–125.

  • Blake, G.R. (1965). Bulk density in Methods of soil analysis: Part 1 physical and mineralogical properties, including statistics of measurement and sampling, 9.1, No. 9, Part 1, C. A. Black, 374–390. https://doi.org/10.2134/agronmonogr9.1.c29.

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Journal of Agronomy, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x.

    Article  Google Scholar 

  • Bower, C. A. R., Reitemeier, F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73(4), 251–262. https://doi.org/10.1097/00010694-195204000-00001.

    Article  CAS  Google Scholar 

  • Campo, J., Andreu, V., Gimeno-Garcia, E., Gonzalez, O., & Rubio, J. L. (2006). Occurrence of soil erosion after repeated experimental fires in a Mediterranean environment. Geomorphology, 82, 376–387. https://doi.org/10.1016/j.geomorph.2006.05.014.

    Article  Google Scholar 

  • Chaneton, E. J., & Lavado, R. S. (1996). Soil nutrients and salinity after long-term grazing exclusion in a flooding pampa grassland. Journal of Range Management, 49, 2.182–2.187. https://doi.org/10.2307/4002692.

    Article  Google Scholar 

  • Derner, J. D., Briske, D. D., & Boutton, T. W. (1997). Does grazing mediate soil carbon and nitrogen accumulation beneath C4 perennial grasses along an environmental gradient? Plant and Soil, 191(147), 147–156. https://doi.org/10.1023/A:1004298907778.

    Article  CAS  Google Scholar 

  • Dhaou, S. O., & Abdullah, F. (2010). The protection effects on floristic diversity in a north African Pseudo -Savanna. Pakistan Journal of Botany, 42(3), 1501–1510.

    Google Scholar 

  • Dormaar, J. F., Adams, B. W., & Willms, W. D. (1997). Impact of rotational grazing on mixed prairie soils and vegetation. Journal of Range Management, 50, 647–651.

    Article  Google Scholar 

  • Dormaar, J. F., & Walter, D. W. (1998). Effect of forty-four years of grazing on fescue grassland. Journal of Range Management, 51, 122–126.

    Article  Google Scholar 

  • Fallatah, O. A. (2020). (2020). Groundwater quality patterns and spatiotemporal change in depletion in the regions of the Arabian Shield and Arabian Shelf. Arabian Journal for Science and Engineering, 45, 341–350. https://doi.org/10.1007/s13369-019-04069-1.

    Article  CAS  Google Scholar 

  • Famiglietti, J. S., Rudnicki, J. W., & Rodell, M. (1998). Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 210(14), 259–281. https://doi.org/10.1016/S0022-1694(98)00187-5.

    Article  Google Scholar 

  • Frank, A. B., Tanaka, D. L., Hofmann, L., & Follett, R. F. (1995). Soil carbon and nitrogen of Northern Great Plains grassland as influenced by long- term grazing. Journal of Range Management, 48(5), 470–477. https://doi.org/10.2307/4002255.

    Article  Google Scholar 

  • Frank, D. A., & Groffman, P. M. (1998). Ungulate vs. landscape control of soil C and N processing in grassland of Yellow Stone National Park. Ecology, 79(7), 2229–2241. https://doi.org/10.2307/176818.

    Article  Google Scholar 

  • George, M., Larsen, R., McDougald, N., Gerlach, J., & Fulgham, K. (2004). Cattle grazing has varying impacts on stream-channel erosion in oak woodlands. California Agriculture, 58, 138–143.

    Article  Google Scholar 

  • Gholami, V., Azodi, M., & Taghvaye Salimi, E. (2008). Modeling of karst and alluvial springs discharge in the central Alborz highlands and on the Caspian southern coasts. Caspian Journal of Environmental Sciences, 6(1), 41–45.

    Google Scholar 

  • Gholami, V., Chau, K. W., Fadaee, F., Torkaman, J., & Ghaffari, A. (2015). Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. Journal of Hydrology, 529(3), 1060–1069. https://doi.org/10.1016/j.jhydrol.2015.09.028.

    Article  Google Scholar 

  • Gholami, V., Sahour, H., & Hadian, M. A. (2020a). Mapping soil erosion rates using self-organizing map (SOM) and geographic information system (GIS) on hillslopes. Earth Science Informatics, 13(4), 1175–1185. https://doi.org/10.1007/s12145-020-00499-w.

    Article  Google Scholar 

  • Gholami, V., Sahour, H., & Hadian, M. A. (2020b). Soil erosion modeling using erosion pins and artificial neural networks. Catena, 196, 104902. https://doi.org/10.1016/j.catena.2020.104902.

    Article  Google Scholar 

  • Givi, J., & Asadi, A. (2001). The role of rangeland management in water, soil and vegetation conservation. Second National Conference of Rangeland and Rangeland Management, Iran, 5-7(February), 292–298.

    Google Scholar 

  • Green, D. M., & Kauffman, J. B. (1995). Succession and livestock grazing in a northeast Oregon riparian ecosystem. Journal of Range Management, 48, 307–313.

    Article  Google Scholar 

  • Greenwood, K. L., Macleod, D. A., Scott, J. M., & Hutchinson, K. J. (1998). Changes soil physical properties after grazing exclusion. Soil Use and Management, 14(1), 19–24. https://doi.org/10.1111/j.1475-2743.1998.tb00605.x.

    Article  Google Scholar 

  • Haarmeyer, D. H., Schmiedel, U., Dengler, J., & Bosing, B. M. (2010). How does grazing intensity affect different vegetation types in arid Succulent Karoo, South Africa? Implications for conservation management. Biological Conservation, 143(3), 588–596. https://doi.org/10.1016/j.biocon.2009.11.008.

    Article  Google Scholar 

  • Han, G., Hao, X., Zhao, M., Wang, M., Ellert, B. H., Willms, W., & Wang, M. (2008). Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agriculture, Ecosystems and Environment, 125(1-4), 21–32. https://doi.org/10.1016/j.agee.2007.11.009.

    Article  CAS  Google Scholar 

  • Johansen, M. P., Hakonson, T. E., & Breshears, D. D. (2001). Post-fire runoff and erosion from rainfall simulation: contrasting forests with shrublands and grasslands. Hydrological Processes, 15, 2953–2965. https://doi.org/10.1002/hyp.384.

    Article  Google Scholar 

  • Kazemi, S. M., Karimzadeh, H. R., Tarkesh Esfahani, M., & Bashari, H. (2018). Effects of long-term exclosure and rest-rotation grazing system on some soil physicochemical properties in semi-arid rangelands (Case study: semi-steppe rangelands of Hamzavi research station, Semirom of Isfahan). Iranian Journal of Range and Desert Research, 25(3), 546–536.

    Google Scholar 

  • Kohandel, A., Arzani, H., & Hosseini, M. (2006). Effect of grazing intensity on NP K of soil. Iran-Watershed Management Science and Engineering, 3, 59–65.

    Google Scholar 

  • Kumar, S., & Kushwaha, S. P. S. (2013). Modelling soil erosion risk based on RUSLE-3D using GIS in a Shivalik sub-watershed. Journal of Earth System Science, 122, 389–398. https://doi.org/10.1007/s12040-013-0276-0.

    Article  Google Scholar 

  • Kumbasli, M., Makineci, E., & Cakir, M. (2010). Long term effects of red deer (Cervus elaphus) grazing on soil in a breeding area. Journal of Environmental Biology, 31(1-2), 185–188.

    Google Scholar 

  • Larsen, I. J., MacDonald, L. H., Brown, E., Rough, D., Welsh, M. J., Pietraszek, J. H., Libohova, Z., et al. (2009). Causes of post-fire runoff and erosion: water repellency, cover, or soil sealing? Soil Science Society of America Journal, 73, 1393–1407. https://doi.org/10.2136/sssaj2007.0432.

    Article  CAS  Google Scholar 

  • Lemenih, M., Karltun, E., & Olsson, M. (2005). Assessing soil chemical and physical property responses to deforestation and subsequent cultivation in smallholders farming system in Ethiopia. Agriculture, Ecosystems and Environment, 105(1-2), 373–386. https://doi.org/10.1016/j.agee.2004.01.046.

    Article  CAS  Google Scholar 

  • Ma, X., Asano, M., Tamura, K., Zhao, R., Nakatsuka, H., & Wang, T. (2020). Physicochemical properties and micromorphology of degraded alpine meadow soils in the Eastern Qinghai-Tibet Plateau. CATENA, 194, https://doi.org/10.1016/j.catena.2020.104649

  • Marcos, M. S., Carrera, A. L., Bertiller, M. B., & Olivera, N. L. (2020). Grazing enhanced spatial heterogeneity of soil dehydrogenase activity in arid shrublands of Patagonia, Argentina. Journal of Soils and Sediments, 20, 883–888. https://doi.org/10.1007/s11368-019-02440-1.

    Article  CAS  Google Scholar 

  • McGill, W.B., Dormaar, J.F., & Reinl-Dwyer, E., (1988). New perspectives on soil organic matter quality, quantity and dynamics on the Canadian prairies. 34th Annual CSSS/AIC Meeting, Calgary, Italia, 2 l-24: August: 30-48.

  • Mcnaughton, S. J. (1979). Grazing as an optimization process: grass-ungulate relationships in the Serengeti. The American Naturalist, 113(5), 691–703. https://doi.org/10.1086/283426.

    Article  Google Scholar 

  • Mut, H., & Ayan, I. (2011). Effects of different improvement methods on some soil properties in a secondary succession rangeland. Journal of Biological and Environmental Sciences, 5(13), 11–16.

    Google Scholar 

  • Neff, J. C., Reynolds, R. L., Belnap, J., & Lamothe, P. (2005). Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecological Applications, 15(1), 87–95. https://doi.org/10.1890/04-0268.

    Article  Google Scholar 

  • Nelson, D. W., & Sommers, L. E., (1982). Total carbon, organic carbon and organic matter, P 539-577. In: Page , R. H., Miller, A. L., Keeney, D. R., (Eds.), Methods of soil analysis, Part 2, Chemical and microbiological properties. Agronomy Monograph, No. 9. American Society of Agronomy Inc., Madison.

  • Niknahad-Gharmakher, H., Piutti, M., Machet, S., Benizri, J. M., & Recous, S. (2012). Mineralization-immobilization of sulphur in a soil during decomposition of plant residues of varied chemical composition and S content. Plant and Soil, 360(2), 391–404. https://doi.org/10.1007/s11104-012-1230-7.

    Article  CAS  Google Scholar 

  • Niknahad Gharemakher, H., Aghtabye, A., & Akbarlou, M. (2018). Effects of grazing exclusure on some soil properties, erodibility and carbon sequestration (case study: Bozdaghin rangelands, North Khorasan, Iran). Iranian Journal of Range and Desert Research, 24(4), 708–718. https://doi.org/10.22092/ijrdr.2017.114058.

    Article  Google Scholar 

  • Oggioni, S.D., Ochoa-Hueso, R., & Peco, B. (2020). Livestock grazing abandonment reduces soil microbial activity and carbon storage in a Mediterranean Dehesa. Applied Soil Ecology, 153, doi:https://doi.org/10.1016/j.apsoil.2020.103588

  • Ozaslan, A., Parlak, M., Blanco-Canqui, H., Schacht, W. H., Guretzky, J. A., & Mamo, M. (2015). Patch burning: implications on water erosion and soil properties. Journal of Environmental Quality, 44, 903–909. https://doi.org/10.2134/jeq2014.12.0523.

    Article  CAS  Google Scholar 

  • Pei, S. H., Fu, H., & Wan, C. (2008). Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agriculture, Ecosystems and Environment, 124(1-2), 33–39. https://doi.org/10.1016/j.agee.2007.08.008.

    Article  Google Scholar 

  • Qian, J., Wang, Z., Liu, Z., & Busso, C. A. (2014). Belowground bud bank responses to grazing intensity in the inner-Mongolia steppe, China. Land Degradation & Development, 28(3), 822–832. https://doi.org/10.1002/ldr.2300.

    Article  Google Scholar 

  • Raiesi, F., & Asadi, E. (2006). Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biology and Fertility of Soils, 43, 76–82. https://doi.org/10.1007/s00374-005-0066-1.

    Article  Google Scholar 

  • Raiesi, F., & Riahi, M. (2014). The influence of grazing exclosure on soil C stocks and dynamics, and ecological indicators in upland arid and semiarid rangelands. Ecological Indicators, 41, 145–154. https://doi.org/10.1016/j.ecolind.2014.01.040.

    Article  CAS  Google Scholar 

  • Ren, H., Schönbach, P., Wan, H., Gierus, M., & Taube, F. (2012). Effects of grazing intensity and environmental factors on species composition and diversity in typical steppe of Inner Mongolia, China. PLoS One, 7(12), e52180. https://doi.org/10.1371/journal.pone.0052180.

    Article  CAS  Google Scholar 

  • Riginos, C., & Hoffman, M. T. (2003). Changes in population biology of two succulent shrubs along a grazing gradient. Applied Ecology, 40(4), 615–625. https://doi.org/10.1046/j.1365-2664.2003.00826.x.

    Article  Google Scholar 

  • Rossignol, N., Bonis, A., & Bouzille, J. B. (2006). Consequence of grazing pattern and vegetation structure on the spatial variations of net N mineralization in wet grassland. Applied Soil Ecology, 31(1-2), 62–70. https://doi.org/10.1016/j.apsoil.2005.04.004.

    Article  Google Scholar 

  • Sandhage-Hofmann, A., Kotzé, E., van Delden, L., Dominiak, M., Fouché, H. J., van der Westhuizen, H. C., et al. (2015). Rangeland management effects on soil properties in the savanna biome, South Africa: A case study along grazing gradients in communal and commercial farms. Arid Environments, 120, 14–25. https://doi.org/10.1016/j.jaridenv.2015.04.004.

    Article  Google Scholar 

  • Schuman, G. E., Reeder, J. D., Manley, J. T., Hart, R. H., & Manley, W. A. (1999). Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecological Applications, 9(1), 65–71. https://doi.org/10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2.

    Article  Google Scholar 

  • Shariff, A. R., Biondini, M. E., & Grygiel, C. E. (1994). Grazing intensity effects on litter decomposition and soil nitrogen mineralization. Journal of Range Management, 47(6), 444–449.

    Article  Google Scholar 

  • Shende, S., & Chau, K.W. (2019). Forecasting safe distance of a pumping well for effective riverbank filtration. Journal of Hazardous, Toxic, and Radioactive Waste, 23(2). https://doi.org/10.1061/(ASCE).HZ.2153-5515.0000434

  • Somda, Z. C., Powell, J. M., & Bationo, A. (1997). Soil pH and nitrogen changes following cattle and sheep urine deposition. Communications in Soil Science and Plant Analysis, 28(15-16), 1253–1268. https://doi.org/10.1080/00103629709369872.

    Article  CAS  Google Scholar 

  • Steffens, M., Kölbl, A., Totsche, K. U., & Kögel-Knabner, I. (2008). Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma, 143(1-2), 63–72. https://doi.org/10.1016/j.geoderma.2007.09.004.

    Article  CAS  Google Scholar 

  • Taormina, R., Chau, K. W., & Sethi, R. (2012). Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Engineering Applications of Artificial Intelligence, 25(8), 1670–1676. https://doi.org/10.1016/j.engappai.2012.02.009.

    Article  Google Scholar 

  • Teague, W. R., Dowhower, S. L., Baker, S. A., Ansley, R. J., Kreuter, U. P., Conover, D. M., et al. (2010). Soil and herbaceous plant responses to summer patch burns under continuous and rotational grazing. Agriculture, Ecosystems & Environment, 137, 113–123. https://doi.org/10.1016/j.agee.2010.01.010.

    Article  Google Scholar 

  • Teague, W. R., Duke, S. E., Waggoner, J. A., Dowhower, S. L., & Gerrard, S. A. (2008). Rangeland vegetation and soil response to summer patch fires under continuous grazing. Arid Land Research and Management, 22, 228–241. https://doi.org/10.1080/15324980802183210.

    Article  Google Scholar 

  • Teague, W. R., Dowhower, S. L., Baker, S. A., Haile, N., DeLaune, P. B., & Conover, D. M. (2011). Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agriculture, Ecosystem sand Environment, 141(3-4), 310–322. https://doi.org/10.1016/j.agee.2011.03.009.

    Article  CAS  Google Scholar 

  • Thurow, T. L. (1991). Hydrology and erosion. In R. K. Heitschmidt & J. W. Stuth (Eds.), Grazing management: an ecological perspective (pp. 141–151). Portland: Timber Press.

    Google Scholar 

  • Vaillant, G.C., Pierzynski, G.M., Ham, J.M., De Rouchey, J. (2009). Nutrient accumulation below cattle feedlot pens in Kansas. Journal of Environmental Quality, 38(3), 909–918. https://doi.org/10.2134/jeq2008.0205

  • Van Pollen, H. W., & Lacey, J. R. (1979). Herbage response to grazing systems and stocking intensities. Journal of Range Management, 32(4), 250–253.

    Article  Google Scholar 

  • Wang, Z., Johnson, D. A., Rong, Y., & Wang, K. (2016). Grazing effects on soil characteristics and vegetation of grassland in northern China. Solid Earth, 7(1), 55–65. https://doi.org/10.5194/se-7-55-2016.

    Article  Google Scholar 

  • Warren, S. D., Thurow, T. L., Blackburn, W. H., & Garaza, N. E. (1986). The influence of livestock trampling under intensive rotation grazing on soil hydrologic characteristics. Journal of Range Management, 39, 491–495.

    Article  Google Scholar 

  • Wolf, K. M., Baldwin, R. A., & Barry, S. (2017). Compatibility of livestock grazing and recreational use on coastal California public lands: importance, interactions, and management solutions. Rangeland Ecology & Management, 70(2), 192–201. https://doi.org/10.1016/j.rama.2016.08.008.

    Article  Google Scholar 

  • Wu, C. L., & Chau, K. W. (2011). Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology, 399(3-4), 394–409. https://doi.org/10.1016/j.jhydrol.2011.01.017.

    Article  Google Scholar 

  • Zhang, Y., Gao, X., Hao, X., Alexander, T. W., Shi, X., Jin, L., et al. (2020). Heavy grazing over 64 years reduced soil bacterial diversity in the foothills of the Rocky Mountains, Canada. Applied Soil Ecology, 147. https://doi.org/10.1016/j.apsoil.2019.09.011.

  • Zhan, T., Zhang, Z., Sun, J., Liu, M., Zhang, X., Peng, F., et al. (2020). Meta-analysis demonstrating that moderate grazing can improve the soil quality across China’s grassland ecosystems. Applied Soil Ecology, 147. https://doi.org/10.1016/j.apsoil.2019.103438

  • Zhao, Y., Peth, S., Krummelbein, J., Horn, R., Wang, Z., Steffens, M., et al. (2007). Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecological Modelling, 205(1-2), 241–254. https://doi.org/10.1016/j.ecolmodel.2007.02.019.

    Article  Google Scholar 

  • Zhou, Z. C., Gan, Z. T., Shangguan, Z. P., & Dong, Z. B. (2010). Effects of grazing on soil physical properties and soil erodibility in semiarid grassland of the Northern Loess Plateau (China). Catena, 82, 87–91. https://doi.org/10.1016/j.catena.2010.05.005.

    Article  Google Scholar 

  • Zhou, Y., Ding, Y., Li, H., Xu, X., Li, Y., Zhang, W., et al. (2020). The effects of short-term grazing on plant and soil carbon and nitrogen isotope composition in a temperate grassland. Journal of Arid Environments, 179. https://doi.org/10.1016/j.jaridenv.2020.104198.

Download references

Acknowledgments

The authors would like to thank the officers of the Range and Watershed Department of Khorasan Razavi for supplying the original data used in this study and also the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ahmadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastgheyb Shirazi, S., Ahmadi, A., Abdi, N. et al. Long-term grazing exclosure: implications on water erosion and soil physicochemical properties (case study: Bozdaghin rangelands, North Khorasan, Iran). Environ Monit Assess 193, 51 (2021). https://doi.org/10.1007/s10661-020-08819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08819-9

Keywords

Navigation