Development of potential map for groundwater abstraction in the northwest region of Bangladesh using RS-GIS-based weighted overlay analysis and water-table-fluctuation technique

Abstract

The increasing trend of population growth along with the rapid groundwater-based agricultural expansion and decreasing trend of mean annual rainfall in the Northwest region of Bangladesh has been exacerbating the declination of groundwater for further expansion. Therefore, the present study attempts to demarcate the potential groundwater abstraction zones from the assessment of potential recharge and available recharge. Potential recharge was obtained with commonly used geospatial-based weighted linear combination (WLC) technique. Here, WLC analysis was based on eight factors related to physiographic (e.g. drainage density, lineament density, slope), geomorphologic (e.g. geomorphology, lithology, soil), land use and land cover (LULC) and hydrology (i.e. rainfall). Available net recharge was assessed for the period 1993–2017 by employing the water table fluctuation method. Finally, the resultant map on potential abstraction was characterized into five different classes, viz. ‘very low’, ‘low’, ‘moderate’, ‘high’ and ‘very high’. The derived map reveals that ‘very high’ potential zone is distributed along the Teesta river floodplain, especially the northeastern part. In contrast, the Barind Tract (i.e. the southwestern and the southcentral parts) area shows ‘very low’ groundwater prospect. Such fused interpretations are expected to contribute to the planning of integrated management of water resources.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adham, M. I., Jahan, C. S., Mazumder, Q. H., Hossain, M. M. A., & Haque, A. M. (2010). Study on groundwater recharge potentiality of Barind tract, Rajshahi District, Bangladesh using GIS and remote sensing technique. Journal of the Geological Society of India, 75(2), 432–438. https://doi.org/10.1007/s12594-010-0039-3.

    Article  Google Scholar 

  2. Adiat, K. A. N., Nawawi, M. N. M., & Abdullah, K. (2012). Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool - a case of predicting potential zones of sustainable groundwater resources. Journal of Hydrology, 440-441, 75–89. https://doi.org/10.1016/j.jhydrol.2012.03.028.

    Article  Google Scholar 

  3. Alam, M. K., Hasan, A. K. M., Khan, M. R., & Whitney, J. W. (1990). Geological map of Bangladesh. Geological Survey of Bangladesh. Dhaka: US Geological Survey.

    Google Scholar 

  4. Al-Ruzouq, R., Shanableh, A., Merabtene, T., Siddique, M., Khalil, M. A., Idris, A., & Almulla, E. (2019). Potential groundwater zone mapping based on geo-hydrological considerations and multi-criteria spatial analysis: North UAE. Catena, 173, 511–524. https://doi.org/10.1016/j.catena.2018.10.037.

    Article  Google Scholar 

  5. Avtar, R., Singh, C. K., Shashtri, S., Singh, A., & Mukherjee, S. (2010). Identification and analysis of groundwater potential zones in ken - Betwa river linking area using remote sensing and geographic information system. Geocarto International, 25(5), 379–396. https://doi.org/10.1080/10106041003731318.

    Article  Google Scholar 

  6. Bhuvaneswaran, C., Ganesh, A., & Nevedita, S. (2015). Spatial analysis of groundwater potential zones using remote sensing, GIS and MIF techniques in uppar Odai sub-watershed, Nandiyar, Cauvery basin, Tamilnadu. International Journal of Current Research, 7(09), 20765–20774.

    Google Scholar 

  7. Bonsor, H. C., MacDonald, A. M., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., Dixit, A., Foster, S. S. D., Gopal, K., Lapworth, D. J., Moench, M., Mukherjee, A., Rao, M. S., Shamsudduha, M., Smith, L., Taylor, R. G., Tucker, J., van Steenbergen, F., Yadav, S. K., & Zahid, A. (2017). Hydrogeological typologies of the indo-Gangetic basin alluvial aquifer, South Asia. Hydrogeology Journal, 25(5), 1377–1406. https://doi.org/10.1007/s10040-017-1550-z.

    CAS  Article  Google Scholar 

  8. Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing, 30(1), 231–250. https://doi.org/10.1080/01431160802270131.

    Article  Google Scholar 

  9. Dagès, C., Voltz, M., Lacas, J. G., Huttel, O., Negro, S., & Louchart, X. (2008). An experimental study of water table recharge by seepage losses from a ditch with intermittent flow. Hydrological Processes, 22(18), 3555–3563. https://doi.org/10.1002/hyp.6958.

    Article  Google Scholar 

  10. Das, S. (2017). Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. Modeling Earth Systems and Environment, 3(4), 1589–1599. https://doi.org/10.1007/s40808-017-0396-7.

    Article  Google Scholar 

  11. Das, S., & Pardeshi, S. D. (2018). Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Applied Water Science, 8(7), 197. https://doi.org/10.1007/s13201-018-0848-x.

    Article  Google Scholar 

  12. Deepa, S., Venkateswaran, S., Ayyandurai, R., Kannan, R., & Vijay Prabhu, M. (2016). Groundwater recharge potential zones mapping in upper Manimuktha sub basin Vellar river Tamil Nadu India using GIS and remote sensing techniques. Modeling Earth Systems and Environment, 2(3), 137. https://doi.org/10.1007/s40808-016-0192-9.

    Article  Google Scholar 

  13. Dey, N. C., Saha, R., Parvez, M., Bala, S. K., Islam, A. S., Paul, J. K., & Hossain, M. (2017). Sustainability of groundwater use for irrigation of dry-season crops in Northwest Bangladesh. Groundwater for Sustainable Development, 4, 66–77. https://doi.org/10.1016/j.gsd.2017.02.001.

    Article  Google Scholar 

  14. Fagbohun, B. J. (2018). Integrating GIS and multi-influencing factor technique for delineation of potential groundwater recharge zones in parts of Ilesha schist belt, southwestern Nigeria. Environmental Earth Sciences, 77(3), 69. https://doi.org/10.1007/s12665-018-7229-5.

    CAS  Article  Google Scholar 

  15. Fashae, O. A., Tijani, M. N., Talabi, A. O., & Adedeji, O. I. (2014). Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach. Applied Water Science, 4(1), 19–38. https://doi.org/10.1007/s13201-013-0127-9.

    CAS  Article  Google Scholar 

  16. Fenta, A. A., Kifle, A., Gebreyohannes, T., & Hailu, G. (2015). Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya Valley, northern Ethiopia. Hydrogeology Journal, 23(1), 195–206. https://doi.org/10.1007/s10040-014-1198-x.

    Article  Google Scholar 

  17. Ferozur, R. M., Jahan, C. S., Arefin, R., & Mazumder, Q. H. (2019). Groundwater potentiality study in drought prone barind tract, NW Bangladesh using remote sensing and GIS. Groundwater for Sustainable Development, 8, 205–215. https://doi.org/10.1016/j.gsd.2018.11.006.

    Article  Google Scholar 

  18. Ghosh, P. K., Bandyopadhyay, S., & Jana, N. C. (2016). Mapping of groundwater potential zones in hard rock terrain using geoinformatics: a case of Kumari watershed in western part of West Bengal. Modeling Earth Systems and Environment, 2(1), 1–12. https://doi.org/10.1007/s40808-015-0044-z.

    CAS  Article  Google Scholar 

  19. Hammouri, N., El-Naqa, A., & Barakat, M. (2012). An integrated approach to groundwater exploration using remote sensing and geographic information system. Journal of Water Resource and Protection, 4(9), 717–724. https://doi.org/10.4236/jwarp.2012.49081.

    Article  Google Scholar 

  20. Islam, K. Z., Islam, M. S., Lacoursière, J. O., & Dessborn, L. (2014). Low cost rainwater harvesting: an alternate solution to salinity affected coastal Region of Bangladesh. American Journal of Water Resources, 2(6), 141–148. https://doi.org/10.12691/ajwr-2-6-2.

    Article  Google Scholar 

  21. Jahan, C. S., Rahaman, M. F., Arefin, R., Ali, M. S., & Mazumder, Q. H. (2018). Delineation of groundwater potential zones of Atrai - sib river basin in north-West Bangladesh using remote sensing and GIS techniques. Sustainable Water Resources Management, 5(2), 689–702. https://doi.org/10.1007/s40899-018-0240-x.

    Article  Google Scholar 

  22. Kaliraj, S., Chandrasekar, N., & Magesh, N. S. (2014). Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian Journal of Geosciences, 7(4), 1385–1401. https://doi.org/10.1007/s12517-013-0849-x.

    Article  Google Scholar 

  23. Kim, H. H., & Elman, G. C. (1990). Normalisation of satellite imagery. International Journal of Remote Sensing, 11(8), 1331–1347. https://doi.org/10.1080/01431169008955098.

    Article  Google Scholar 

  24. Kumar, P. K. D., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28(24), 5583–5601. https://doi.org/10.1080/01431160601086050.

    Article  Google Scholar 

  25. Leduc, C., Favreau, G., & Schroeter, P. (2001). Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger. Journal of Hydrology, 243(1–2), 43–54. https://doi.org/10.1016/S0022-1694(00)00403-0.

    Article  Google Scholar 

  26. Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2), 189–196. https://doi.org/10.1016/j.gsf.2011.10.007.

    Article  Google Scholar 

  27. Mainuddin, M., Kirby, M., Chowdhury, R. A. R., & Shah-Newaz, S. M. (2015). Spatial and temporal variations of, and the impact of climate change on, the dry season crop irrigation requirements in Bangladesh. Irrigation Science, 33(2), 107–120. https://doi.org/10.1007/s00271-014-0451-3.

    Article  Google Scholar 

  28. Mainuddin, M., Alam, M. M., Maniruzzaman, M., Islam, M. T., Kabir, M. J., Hasan, M., Scobie, M., & Schmidt, E. (2019). Irrigated agriculture in the northwest region of Bangladesh. Canberra: CSIRO.

    Google Scholar 

  29. Mainuddin, M., Maniruzzaman, M., Alam, M. M., Mojid, M. A., Schmidt, E. J., Islam, M. T., & Scobie, M. (2020). Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the north-West Bangladesh. Agricultural Water Management, 240, 106294. https://doi.org/10.1016/j.agwat.2020.106294.

    Article  Google Scholar 

  30. Majumder, R. K., Shimada, J., & Taniguchi, M. (2013). Groundwater flow systems in the Bengal Delta, Bangladesh, inferred from subsurface temperature readings. Songklanakarin Journal of Science & Technology, 35(1), 99–106.

    Google Scholar 

  31. Malczewski, J. (1999). GIS and multicriteria decision analysis (p. 392). New York: Wiley.

    Google Scholar 

  32. MPO. (1987). The groundwater resource and its availability for development. Technical report no. 5, National Water Plan Phase - I (Master Plan Organization, Ministry of Water Resources, GoB).

  33. Nasir, M. J., Khan, S., Zahid, H., & Khan, A. (2018). Delineation of groundwater potential zones using GIS and multi influence factor (MIF) techniques: a study of district swat, Khyber Pakhtunkhwa, Pakistan. Environmental Earth Sciences, 77(10), 367. https://doi.org/10.1007/s12665-018-7522-3.

    Article  Google Scholar 

  34. Newton, I. H., Zaman, R. U., Nowreen, S., Islam, A. K. M. S., Razzaque, S., & Islam, G. M. T. (2020). Deciphering of groundwater recharge potential zones in Dhaka City, Bangladesh by RS and GIS techniques. In Water, flood management and water security under a changing climate (pp. 85–97). Cham: Springer. https://doi.org/10.1007/978-3-030-47786-8_5.

    Google Scholar 

  35. Nowreen, S. (2017). Mechanism of groundwater response to recharge and its quantification for shallow aquifers in Bangladesh, PhD Thesis. Bangladesh University of Engineering and Technology.

  36. NWMP. (2000). National water management plan. Government of Bangladesh: Ministry of Water Resources.

    Google Scholar 

  37. Oikonomidis, D., Dimogianni, S., Kazakis, N., & Voudouris, K. (2015). A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology, 525, 197–208. https://doi.org/10.1016/j.jhydrol.2015.03.056.

    Article  Google Scholar 

  38. Patra, S., Mishra, P., & Mahapatra, S. C. (2018). Delineation of groundwater potential zone for sustainable development: A case study from ganga alluvial plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. Journal of Cleaner Production, 172, 2485–2502. https://doi.org/10.1016/j.jclepro.2017.11.161.

    Article  Google Scholar 

  39. Preeja, K. R., Joseph, S., Thomas, J., & Vijith, H. (2011). Identification of groundwater potential zones of a tropical river basin (Kerala, India) using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 39(1), 83–94. https://doi.org/10.1007/s12524-011-0075-5.

    Article  Google Scholar 

  40. Rahman, A. S., Kamruzzama, M., Jahan, C. S., & Mazumder, Q. H. (2016). Long-term trend analysis of water table using ‘MAKESENS’ model and sustainability of groundwater resources in drought prone Barind area, NW Bangladesh. Journal of the Geological Society of India, 87(2), 179–193. https://doi.org/10.1007/s12594-016-0386-9.

    Article  Google Scholar 

  41. Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867–883. https://doi.org/10.1007/s12145-015-0220-8.

    Article  Google Scholar 

  42. Rose, R. S., & Krishnan, N. (2009). Spatial analysis of groundwater potential using remote sensing and GIS in the Kanyakumari and Nambiyar basins, India. Journal of the Indian Society of Remote Sensing, 37(4), 681–692.

  43. Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(1), 18–39. https://doi.org/10.1007/s10040-001-0176-2.

    CAS  Article  Google Scholar 

  44. Selvam, S., Manimaran, G., Sivasubramanian, P., & Seshunarayana, T. (2014). Geoenvironmental resource assessment using remote sensing and GIS: a case study from southern coastal region. Research Journal of Recent Sciences, 3(1), 108–115.

    Google Scholar 

  45. Selvam, S., Magesh, N. S., Chidambaram, S., Rajamanickam, M., & Sashikkumar, M. C. (2015). A GIS based identification of groundwater recharge potential zones using RS and IF technique: a case study in Ottapidaram taluk, Tuticorin district, Tamil Nadu. Environmental Earth Sciences, 73(7), 3785–3799. https://doi.org/10.1007/s12665-014-3664-0.

    Article  Google Scholar 

  46. Senanayake, I. P., Dissanayake, D. M. D. O. K., Mayadunna, B. B., & Weerasekera, W. L. (2016). An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers, 7(1), 115–124. https://doi.org/10.1016/j.gsf.2015.03.002.

    Article  Google Scholar 

  47. Shaban, A., Khawlie, M., & Abdallah, C. (2006). Use of remote sensing and GIS to determine recharge potential zones: the case of occidental Lebanon. Hydrogeology Journal, 14(4), 433–443. https://doi.org/10.1007/s10040-005-0437-6.

    Article  Google Scholar 

  48. Shahid, S., & Behrawan, H. (2008). Drought risk assessment in the western part of Bangladesh. Natural Hazards, 46(3), 391–413. https://doi.org/10.1007/s11069-007-9191-5.

    Article  Google Scholar 

  49. Shahid, S., Wang, X. J., Rahman, M. M., Hasan, R., Harun, S. B., & Shamsudin, S. (2015). Spatial assessment of groundwater over-exploitation in northwestern districts of Bangladesh. Journal of the Geological Society of India, 85(4), 463–470. https://doi.org/10.1007/s12594-015-0238-z.

    Article  Google Scholar 

  50. Shamsudduha, M., Chandler, R. E., Taylor, R. G., & Ahmed, K. M. (2009). Recent trends in groundwater levels in a highly seasonal hydrological system: The Ganges-Brahmaputra-Meghna Delta. Hydrology and Earth System Sciences, 13(12), 2373–2385. https://doi.org/10.5194/hess-13-2373-2009.

    Article  Google Scholar 

  51. Shamsudduha, M., Taylor, R. G., Ahmed, K. M., & Zahid, A. (2011). The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeology Journal, 19(4), 901–916. https://doi.org/10.1007/s10040-011-0723-4.

    Article  Google Scholar 

  52. Shamsudduha, M., Taylor, R. G., & Longuevergne, L. (2012). Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin. Water Resources Research, 48(2), W02508. https://doi.org/10.1029/2011WR010993.

    Article  Google Scholar 

  53. Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., & Macomber, S. A. (2001). Classification and change detection using Landsat TM data. Remote Sensing of Environment, 75(2), 230–244. https://doi.org/10.1016/S0034-4257(00)00169-3.

    Article  Google Scholar 

  54. Souissi, D., Msaddek, M. H., Zouhri, L., Chenini, I., El May, M., & Dlala, M. (2018). Mapping groundwater recharge potential zones in arid region using GIS and Landsat approaches Southeast Tunisia. Hydrological Sciences Journal, 63(2), 251–268. https://doi.org/10.1080/02626667.2017.1414383.

    CAS  Article  Google Scholar 

  55. Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. Te Chow (Ed.), Handbook of applied hydrology (pp. 4–39). New York: McGraw-Hill.

    Google Scholar 

  56. Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., & Aggarwal, P. K. (2013). Global isoscapes for δ18O and δ2H in precipitation: improved prediction using regionalised climatic regression models. Hydrology and Earth System Sciences, 17(11), 4713–4728. https://doi.org/10.5194/hess-17-4713-2013.

    CAS  Article  Google Scholar 

  57. Thakur, D., Bartarya, S. K., & Nainwal, H. C. (2018). Mapping groundwater prospect zones in an intermontane basin of the outer Himalaya in India using GIS and remote sensing techniques. Environmental Earth Sciences, 77(10), 368. https://doi.org/10.1007/s12665-018-7552-x.

    Article  Google Scholar 

  58. Thapa, R., Gupta, S., Gupta, A., Reddy, D. V., & Kaur, H. (2018). Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India. Hydrogeology Journal, 26(3), 899–922. https://doi.org/10.1007/s10040-017-1683-0.

    Article  Google Scholar 

  59. USGS. (2017). Landsat 8 data users handbook Section-5. Available online: https://www.usgs.gov/landresources/nli/landsat. Accessed on 3 April 2019.

  60. Vasconcelos, V. V. (2017). What maintains the waters flowing in our rivers? Applied Water Science, 7(4), 1579–1593. https://doi.org/10.1007/s13201-015-0373-0.

    Article  Google Scholar 

  61. Yeh, H. F., Lee, C. H., Hsu, K. C., & Chang, P. H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental Geology, 58(1), 185–195. https://doi.org/10.1007/s00254-008-1504-9.

    Article  Google Scholar 

  62. Yeh, H. F., Cheng, Y. S., Lin, H. I., & Lee, C. H. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research, 26(1), 33–43. https://doi.org/10.1016/j.serj.2015.09.005.

    CAS  Article  Google Scholar 

  63. Zzaman, R. U., Nowreen, S., & Newton, I. H. (2020). Groundwater fluctuation in response to annual rainfall in north-west region of Bangladesh. In Water, flood management and water security under a changing climate (pp. 251–266). Cham: Springer. https://doi.org/10.1007/978-3-030-47786-8_18.

    Google Scholar 

Download references

Acknowledgments

The study makes use of secondary data available at the Institute of Water and Flood Management (IWFM) under IFS (International Foundation for Science) funded research grant W 5582-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. M. Saiful Islam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 235 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nowreen, S., Newton, I.H., Zzaman, R.U. et al. Development of potential map for groundwater abstraction in the northwest region of Bangladesh using RS-GIS-based weighted overlay analysis and water-table-fluctuation technique. Environ Monit Assess 193, 24 (2021). https://doi.org/10.1007/s10661-020-08790-5

Download citation

Keywords

  • Groundwater potential zones
  • Northwest region of Bangladesh
  • Remote sensing and geographic information system
  • Water table fluctuation technique
  • Weighted linear combination