Skip to main content

Advertisement

Log in

Factors affecting the effectiveness of riparian buffers in retaining sediment: an isotopic approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Riparian forest width is a major driver of their capacity to retain sediments from agricultural fields. However, the relationship between forest width and ecosystem service provisioning may vary with local environmental conditions such as relief, soil, and vegetation types. In order to assess the effect of forest width, slope, hydraulic conductivity, and land cover (watershed scale) on the effectiveness of riparian buffers in retaining sediment from pastures cultivated with African C4 grasses, we used the natural abundance of carbon stable isotopes (δ13C) in the soil and stream organic sediments as indicators. The study was conducted in small streams of the upper Corumbá River basin, state of Goiás (Cerrado biome), Brazil. We found that slight increases from 2 to 5% mean slope were sufficient to change SOM to a mixture of C3 and C4 carbon sources inside the riparian forests. Therefore, hillslope’s steepness and magnitude control soil transport downslope, but after reaching the riparian forest, sediment retention is strongly affected by the forest width. We also found that soil erosion leads to fine sediment deposition in agricultural streams, especially in those watersheds with a high occurrence of degraded pastures. We conclude that sites along the stream course with a combination of steep slopes, narrow forests, and intensive land use are the most vulnerable to sediment inputs and should be the focus of preservation and restoration by landscape managers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arthur, R. C. J., Oliveira, C. A. De, & Correchel, V. (2009). Erosion and sediment deposition evaluation on a slope under pasture in Jandaia-GO using the “137 cs fallout” technique. International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN, 978–985.

  • Balestrini, R., Sacchi, E., Tidili, D., Delconte, C. A., & Buffagni, A. (2016). Factors affecting agricultural nitrogen removal in riparian strips: examples from groundwater-dependent ecosystems of the Po Valley (Northern Italy). Agriculture, Ecosystems and Environment, 221, 132–144. https://doi.org/10.1016/j.agee.2016.01.034.

    Article  CAS  Google Scholar 

  • Barbosa, F. A. R., Scarano, F. R., Sabará, M. G., & Esteves, F. A. (2004). Brazilian LTER: ecosystem and biodiversity information in support of decision-making. Environmental Monitoring and Assessment, 90(1–3), 121–133. https://doi.org/10.1023/B:EMAS.0000003571.10570.02.

    Article  CAS  Google Scholar 

  • Bartón, K. (2018). Package MuMIn. International Journal of Chemical Sciences, 1–74.

  • Bentivoglio, F., Calizza, E., Rossi, D., Carlino, P., Careddu, G., Rossi, L., & Costantini, M. L. (2016). Site-scale isotopic variations along a river course help localize drainage basin influence on river food webs. Hydrobiologia, 770(1), 257–272. https://doi.org/10.1007/s10750-015-2597-2.

    Article  CAS  Google Scholar 

  • Berhe, A. A., & Kleber, M. (2013). Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology. Earth Surface Processes and Landforms, 38(8), 908–912. https://doi.org/10.1002/esp.3408.

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1926). The hydrometer as a new and rapid method for determining the colloidal content of soils. Soil Science, 23, 319–335.

  • Brasil. (2003). Zoneamento Ecológico-Econômico da Região Integrada de Desenvolvimento do Distrito Federal e Entorno. Rio de Janeiro.

  • Bueno, A. S., Bruno, R. S., Pimentel, T. P., Sanaiotti, T. M., & Magnusson, W. E. (2012). The width of riparian habitats for understory birds in an Amazonian forest. Ecological Applications, 22(2), 722–734. https://doi.org/10.1890/11-0789.1.

    Article  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and inference: a practical information-theoretic approach. Springer (Vol. 2).

  • Cardoso, E. L., Silva, M. L. N., de Silva Moreira, F. M., & Curi, N. (2009). Atributos biológicos indicadores da qualidade do solo em pastagem cultivada e nativa no Pantanal. Pesquisa Agropecuária Brasileira, 44(6), 631–637. https://doi.org/10.1590/S0100-204X2009000600012.

    Article  Google Scholar 

  • Clinton, B. D. (2011). Stream water responses to timber harvest: Riparian buffer width effectiveness. Forest Ecology and Management, 261(6), 979–988. https://doi.org/10.1016/j.foreco.2010.12.012.

  • Cole, L. J., Stockan, J., & Helliwell, R. (2020). Managing riparian buffer strips to optimise ecosystem services: a review, Agriculture, Ecosystems and Environment., 296(February), 106891. https://doi.org/10.1016/j.agee.2020.106891.

  • Cook, R. L., Stape, J. L., & Binkley, D. (2014). Soil carbon dynamics following reforestation of tropical pastures. Soil Science Society of America Journal, 78(1), 290–296. https://doi.org/10.2136/sssaj2012.0439.

    Article  CAS  Google Scholar 

  • Cooper, J. R., Gilliam, J. W., Daniels, R. B., & Robarge, W. P. (1987). Riparian areas as filters for agricultural sediment. Soil Science Society of America Journal, 51(2), 416–420. https://doi.org/10.2136/sssaj1987.03615995005100020029x.

    Article  Google Scholar 

  • Cordeiro, G. G. (2019). Uso do δ13C como indicador da influência de pastagens cultivadas em zonas ripárias na bacia do Alto Corumbá. Universidade de Brasília.

  • de Oliveira Ramos, C. C., & dos Anjos, L. (2014). The width and biotic integrity of riparian forests affect richness, abundance, and composition of bird communities. Natureza a Conservacao, 12(1), 59–64. https://doi.org/10.4322/natcon.2014.011.

    Article  Google Scholar 

  • Dosskey, M. G., Helmers, M. J., & Eisenhauer, D. E. (2008). A design aid for determining width of filter strips. Journal of Soil and Water Conservation, 63(4), 232–241. https://doi.org/10.2489/jswc.63.4.232.

    Article  Google Scholar 

  • EMBRAPA. (2018). Sistema Brasileiro de Classificação de Solos (5a.). Brasília/DF: EMBRAPA - Solos.

  • Farqhuar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503–537.

    Article  Google Scholar 

  • Ferreira, A., Cyrino, J. E. P., Duarte-Neto, P. J., & Martinelli, L. A. (2012). Permeability of riparian forest strips in agricultural, small subtropical watersheds in south-eastern Brazil. Marine and Freshwater Research, 63(12), 1272–1282. https://doi.org/10.1071/MF12092.

    Article  Google Scholar 

  • Flores-Díaz, A. C., Guevara Hernández, R., Mendoza, M. E., Langrave, R., Quevedo, A., & Maass, M. (2018). Hierarchical procedure for creating local typologies for riparian zone research and management based on biophysical features. Physical Geography, 39(2), 118–139. https://doi.org/10.1080/02723646.2017.1387427.

    Article  Google Scholar 

  • Godfrey, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(February), 812–818. https://doi.org/10.1126/science.1185383.

    Article  CAS  Google Scholar 

  • Gregorich, E. G., Greer, K. J., Anderson, D. W., & Liang, B. C. (1998). Carbon distribution and losses: erosion and deposition effects. Soil & Tillage Research, 47(3–4), 291–302. https://doi.org/10.1016/S0167-1987(98)00117-2.

    Article  Google Scholar 

  • Hunke, P., Roller, R., Zeilhofer, P., Schröder, B., & Mueller, E. N. (2015). Soil changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Regional, 4, 31–43. https://doi.org/10.1016/j.geodrs.2014.12.001.

    Article  Google Scholar 

  • Johnson, M. A., Saraiva, P. M., & Coelho, D. (1999). The role of gallery forests in the distribution of cerrado mammals. Revista Brasileira de Biologia, 59(3), 421–427. https://doi.org/10.1590/s0034-71081999000300006.

    Article  Google Scholar 

  • Klink, C. A., & Joly, C. A. (1989). Identification and distribution of C3 and C4 grasses in open and shaded habitats in Sao Paulo State, Brazil. Biotropica, 21(1), 30–34. https://doi.org/10.2307/2388438.

    Article  Google Scholar 

  • Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution, 29(2), 107–116. https://doi.org/10.1016/j.tree.2013.12.001.

    Article  Google Scholar 

  • Ledo, R. M. D., & Colli, G. R. (2016). Silent death: the New Brazilian Forest Code does not protect lizard assemblages in Cerrado riparian forests. South American Journal of Herpetology, 11(2), 98–109. https://doi.org/10.2994/sajh-d-16-00025.1.

    Article  Google Scholar 

  • Lima, J. E. F. W., de Gois Aquino, F., Chaves, T. A., & Lorz, C. (2017). Development of a spatially explicit approach for mapping ecosystem services in the Brazilian Savanna—MapES. Ecological Indicators, 82(July), 513–525. https://doi.org/10.1016/j.ecolind.2017.07.028.

    Article  Google Scholar 

  • Liu, C., Li, Z., Chang, X., Nie, X., Liu, L., Xiao, H., Wang, D., Peng, H., & Zeng, G. (2018). Apportioning source of erosion-induced organic matter in the hilly-gully region of loess plateau in China: insight from lipid biomarker and isotopic signature analysis. Science of the Total Environment, 621, 1310–1319. https://doi.org/10.1016/j.scitotenv.2017.10.097.

    Article  CAS  Google Scholar 

  • Lowrance, R., Todd, R., Fail, J., Hendrickson, O., Leonard, R., & Asmussen, L. (1984). Riparian forests as nutrient filters in agricultural watersheds. BioScience, 34(6), 374–377.

    Article  Google Scholar 

  • McCorkle, E. P., Berhe, A. A., Hunsaker, C. T., Johnson, D. W., McFarlane, K. J., Fogel, M. L., & Hart, S. C. (2016). Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes. Chemical Geology, 445, 172–184. https://doi.org/10.1016/j.chemgeo.2016.04.025.

    Article  CAS  Google Scholar 

  • Montanarella, L., Pennock, D. J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Young Hong, S., Vijarnsorn, P., Zhang, G. L., Arrouays, D., Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henriquez, C. R., de Lourdes Mendonça-Santos, M., Taboada, M., Espinosa-Victoria, D., AlShankiti, A., AlaviPanah, S. K., Elsheikh, E. A. E. M., Hempel, J., Camps Arbestain, M., Nachtergaele, F., & Vargas, R. (2016). World’s soils are under threat. Soil, 2(1), 79–82. https://doi.org/10.5194/soil-2-79-2016.

    Article  CAS  Google Scholar 

  • Moraes, A. B., Wilhelm, A. E., Boelter, T., Stenert, C., Schulz, U. H., & Maltchik, L. (2014). Reduced riparian zone width compromises aquatic macroinvertebrate communities in streams of southern Brazil. Environmental Monitoring and Assessment, 186(11), 7063–7074. https://doi.org/10.1007/s10661-014-3911-6.

    Article  CAS  Google Scholar 

  • Nadeu, E., Berhe, A. A., De Vente, J., & Boix-Fayos, C. (2012). Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach. Biogeosciences, 9(3), 1099–1111. https://doi.org/10.5194/bg-9-1099-2012.

    Article  CAS  Google Scholar 

  • Nóbrega, R. L. B., Guzha, A. C., Torres, G. N., Kovacs, K., Lamparter, G., Amorim, R. S. S., Couto, E., & Gerold, G. (2017). Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS One, 12(6), 1–22. https://doi.org/10.1371/journal.pone.0179414.

    Article  CAS  Google Scholar 

  • Opdam, P. (2016). Bridging the gap between ecosystem services and landscape planning. In M. Potschin, R. Haines-Young, R. U. Fish, & R. K. Turner (Eds.), Handbook of ecosystem services (pp. 564–567). London and New York: Routledge.

    Chapter  Google Scholar 

  • Parron, L. M., Bustamante, M. M. C., & Markewitz, D. (2011). Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of central Brazil. Biogeochemistry, 105(1), 89–104. https://doi.org/10.1007/s10533-010-9537-z.

    Article  CAS  Google Scholar 

  • Pires, L. F., Bacchi, O. O. S., Correchel, V., Reichardt, K., & Filippe, J. (2009). Riparian forest potential to retain sediment and carbon evaluated by the 137Cs fallout and carbon isotopic ratio techniques. Anais da Academia Brasileira de Ciências, 81(2), 271–279. https://doi.org/10.1590/S0001-37652009000200013.

    Article  CAS  Google Scholar 

  • Ribeiro, J. F., & Walter, B. M. T. (1998). Fitofisionomias do bioma Cerrado. Cerrado: ambiente e flora, 89–166.

  • Salemi, L. F., Groppo, J. D., Trevisan, R., de Moraes, J. M., de Barros Ferraz, S. F., Villani, J. P., Duarte-Neto, P. J., & Martinelli, L. A. (2013). Land-use change in the Atlantic rainforest region: consequences for the hydrology of small catchments. Journal of Hydrology, 499, 100–109. https://doi.org/10.1016/j.jhydrol.2013.06.049.

    Article  Google Scholar 

  • Salemi, L. F., Lins, S. R. M., de Campos Ravagnani, E., Magioli, M., Martinez, M. G., Guerra, F., et al. (2016). Past and present land use influences on tropical riparian zones: an isotopic assessment with implications for riparian forest width determination. Biota Neotropica, 16(2). https://doi.org/10.1590/1676-0611-BN-2015-0133.

  • Sano, E. E., Rodrigues, A. A., Martins, E. S., Bettiol, G. M., Bustamante, M. M. C., Bezerra, A. S., Couto Jr., A. F., Vasconcelos, V., Schüler, J., & Bolfe, E. L. (2019). Cerrado ecoregions: a spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. Journal of Environmental Management, 232(November 2018), 818–828. https://doi.org/10.1016/j.jenvman.2018.11.108.

    Article  Google Scholar 

  • Seiffert, N. F. (1984). Gramíneas Forrageiras do Gênero Brachiaria. EMBRAPA, CNPGC, 1–74.

  • SIEG. (2017). Download shapefile: Tipos de Solo do Estado de Goiás. Escala 1:100000. http://www.sieg.go.gov.br/siegdownloads/. Accessed 15 Nov 2019.

  • Silva-Júnior, M. C. (2001). Comparação entre matas de galeria do Distrito Federal e a efetividade do Código Florestal na proteção da sua diversidade arbórea. Acta Botânica Brasílica, 15(1), 139–146.

    Article  Google Scholar 

  • Soil Science Division Staff. (1993). Soil survey manual. In C. Ditzler, K. Scheffe, & H. C. Monger (Eds.), Government Printing Office. Washington: U.S. Department of Agriculture Handbook No. 18, U.S..

    Google Scholar 

  • Sparovek, G., Beatriz Lima Ranieri, S., Gassner, A., Clerice De Maria, I., Schnug, E., Ferreira Dos Santos, R., & Joubert, A. (2002). A conceptual framework for the definition of the optimal width of riparian forests. Agriculture, Ecosystems and Environment, 90(2), 169–175. https://doi.org/10.1016/S0167-8809(01)00195-5.

    Article  Google Scholar 

  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264. https://doi.org/10.1073/pnas.1116437108.

    Article  Google Scholar 

  • Tubelis, D. P., Cowling, A., & Donnelly, C. (2004). Landscape supplementation in adjacent savannas and its implications for the design of corridors for forest birds in the central Cerrado, Brazil. Biological Conservation, 118(3), 353–364. https://doi.org/10.1016/j.biocon.2003.09.014.

    Article  Google Scholar 

  • Valera, C. A., Pissarra, T. C. T., Filho, M. V. M., do Valle Júnior, R. F., Oliveira, C. F., Moura, J. P., et al. (2019). The buffer capacity of riparian vegetation to control water quality in anthropogenic catchments from a legally protected area: a critical view over the Brazilian new forest code. Water (Switzerland), 11(3), 549. https://doi.org/10.3390/w11030549.

    Article  CAS  Google Scholar 

  • Veldkamp, E. (1994). Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Science Society of America Journal, 58(1), 175–180.

    Article  Google Scholar 

  • Vidon, P. G. F., & Hill, A. R. (2004). Landscape controls on the hydrology of stream riparian zones. Journal of Hydrology, 292(1–4), 210–228. https://doi.org/10.1016/j.jhydrol.2004.01.005.

    Article  Google Scholar 

  • Zhang, R. (1997). Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61(4), 1024–1030. https://doi.org/10.2136/sssaj1997.03615995006100040005x.

    Article  CAS  Google Scholar 

  • Zhang, X., Liu, X., Zhang, M., Dahlgren, R. A., & Eitzel, M. (2010). A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. Journal of Environmental Quality, 39(1), 76–84. https://doi.org/10.2134/jeq2008.0496.

    Article  CAS  Google Scholar 

  • Zimmermann, B., & Elsenbeer, H. (2009). The near-surface hydrological consequences of disturbance and recovery: a simulation study. Journal of Hydrology, 364(1–2), 115–127. https://doi.org/10.1016/j.jhydrol.2008.10.016.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq for the scholarship granted to the first author. We also thank Jill Haring for translating the manuscript.

Funding

The fieldwork and laboratory analysis performed in this work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, (23038.006832/2014-11: Edital CAPES 25/2014 – Pró-Forenses).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Gomes Cordeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordeiro, G.G., Vasconcelos, V., Salemi, L.F. et al. Factors affecting the effectiveness of riparian buffers in retaining sediment: an isotopic approach. Environ Monit Assess 192, 735 (2020). https://doi.org/10.1007/s10661-020-08705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08705-4

Keywords

Navigation