Factors affecting the effectiveness of riparian buffers in retaining sediment: an isotopic approach

Abstract

Riparian forest width is a major driver of their capacity to retain sediments from agricultural fields. However, the relationship between forest width and ecosystem service provisioning may vary with local environmental conditions such as relief, soil, and vegetation types. In order to assess the effect of forest width, slope, hydraulic conductivity, and land cover (watershed scale) on the effectiveness of riparian buffers in retaining sediment from pastures cultivated with African C4 grasses, we used the natural abundance of carbon stable isotopes (δ13C) in the soil and stream organic sediments as indicators. The study was conducted in small streams of the upper Corumbá River basin, state of Goiás (Cerrado biome), Brazil. We found that slight increases from 2 to 5% mean slope were sufficient to change SOM to a mixture of C3 and C4 carbon sources inside the riparian forests. Therefore, hillslope’s steepness and magnitude control soil transport downslope, but after reaching the riparian forest, sediment retention is strongly affected by the forest width. We also found that soil erosion leads to fine sediment deposition in agricultural streams, especially in those watersheds with a high occurrence of degraded pastures. We conclude that sites along the stream course with a combination of steep slopes, narrow forests, and intensive land use are the most vulnerable to sediment inputs and should be the focus of preservation and restoration by landscape managers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Arthur, R. C. J., Oliveira, C. A. De, & Correchel, V. (2009). Erosion and sediment deposition evaluation on a slope under pasture in Jandaia-GO using the “137 cs fallout” technique. International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN, 978–985.

  2. Balestrini, R., Sacchi, E., Tidili, D., Delconte, C. A., & Buffagni, A. (2016). Factors affecting agricultural nitrogen removal in riparian strips: examples from groundwater-dependent ecosystems of the Po Valley (Northern Italy). Agriculture, Ecosystems and Environment, 221, 132–144. https://doi.org/10.1016/j.agee.2016.01.034.

    CAS  Article  Google Scholar 

  3. Barbosa, F. A. R., Scarano, F. R., Sabará, M. G., & Esteves, F. A. (2004). Brazilian LTER: ecosystem and biodiversity information in support of decision-making. Environmental Monitoring and Assessment, 90(1–3), 121–133. https://doi.org/10.1023/B:EMAS.0000003571.10570.02.

    CAS  Article  Google Scholar 

  4. Bartón, K. (2018). Package MuMIn. International Journal of Chemical Sciences, 1–74.

  5. Bentivoglio, F., Calizza, E., Rossi, D., Carlino, P., Careddu, G., Rossi, L., & Costantini, M. L. (2016). Site-scale isotopic variations along a river course help localize drainage basin influence on river food webs. Hydrobiologia, 770(1), 257–272. https://doi.org/10.1007/s10750-015-2597-2.

    CAS  Article  Google Scholar 

  6. Berhe, A. A., & Kleber, M. (2013). Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology. Earth Surface Processes and Landforms, 38(8), 908–912. https://doi.org/10.1002/esp.3408.

    CAS  Article  Google Scholar 

  7. Bouyoucos, G. J. (1926). The hydrometer as a new and rapid method for determining the colloidal content of soils. Soil Science, 23, 319–335.

  8. Brasil. (2003). Zoneamento Ecológico-Econômico da Região Integrada de Desenvolvimento do Distrito Federal e Entorno. Rio de Janeiro.

  9. Bueno, A. S., Bruno, R. S., Pimentel, T. P., Sanaiotti, T. M., & Magnusson, W. E. (2012). The width of riparian habitats for understory birds in an Amazonian forest. Ecological Applications, 22(2), 722–734. https://doi.org/10.1890/11-0789.1.

    Article  Google Scholar 

  10. Burnham, K. P., & Anderson, D. R. (2002). Model selection and inference: a practical information-theoretic approach. Springer (Vol. 2).

  11. Cardoso, E. L., Silva, M. L. N., de Silva Moreira, F. M., & Curi, N. (2009). Atributos biológicos indicadores da qualidade do solo em pastagem cultivada e nativa no Pantanal. Pesquisa Agropecuária Brasileira, 44(6), 631–637. https://doi.org/10.1590/S0100-204X2009000600012.

    Article  Google Scholar 

  12. Clinton, B. D. (2011). Stream water responses to timber harvest: Riparian buffer width effectiveness. Forest Ecology and Management, 261(6), 979–988. https://doi.org/10.1016/j.foreco.2010.12.012.

  13. Cole, L. J., Stockan, J., & Helliwell, R. (2020). Managing riparian buffer strips to optimise ecosystem services: a review, Agriculture, Ecosystems and Environment., 296(February), 106891. https://doi.org/10.1016/j.agee.2020.106891.

  14. Cook, R. L., Stape, J. L., & Binkley, D. (2014). Soil carbon dynamics following reforestation of tropical pastures. Soil Science Society of America Journal, 78(1), 290–296. https://doi.org/10.2136/sssaj2012.0439.

    CAS  Article  Google Scholar 

  15. Cooper, J. R., Gilliam, J. W., Daniels, R. B., & Robarge, W. P. (1987). Riparian areas as filters for agricultural sediment. Soil Science Society of America Journal, 51(2), 416–420. https://doi.org/10.2136/sssaj1987.03615995005100020029x.

    Article  Google Scholar 

  16. Cordeiro, G. G. (2019). Uso do δ13C como indicador da influência de pastagens cultivadas em zonas ripárias na bacia do Alto Corumbá. Universidade de Brasília.

  17. de Oliveira Ramos, C. C., & dos Anjos, L. (2014). The width and biotic integrity of riparian forests affect richness, abundance, and composition of bird communities. Natureza a Conservacao, 12(1), 59–64. https://doi.org/10.4322/natcon.2014.011.

    Article  Google Scholar 

  18. Dosskey, M. G., Helmers, M. J., & Eisenhauer, D. E. (2008). A design aid for determining width of filter strips. Journal of Soil and Water Conservation, 63(4), 232–241. https://doi.org/10.2489/jswc.63.4.232.

    Article  Google Scholar 

  19. EMBRAPA. (2018). Sistema Brasileiro de Classificação de Solos (5a.). Brasília/DF: EMBRAPA - Solos.

  20. Farqhuar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503–537.

    Article  Google Scholar 

  21. Ferreira, A., Cyrino, J. E. P., Duarte-Neto, P. J., & Martinelli, L. A. (2012). Permeability of riparian forest strips in agricultural, small subtropical watersheds in south-eastern Brazil. Marine and Freshwater Research, 63(12), 1272–1282. https://doi.org/10.1071/MF12092.

    Article  Google Scholar 

  22. Flores-Díaz, A. C., Guevara Hernández, R., Mendoza, M. E., Langrave, R., Quevedo, A., & Maass, M. (2018). Hierarchical procedure for creating local typologies for riparian zone research and management based on biophysical features. Physical Geography, 39(2), 118–139. https://doi.org/10.1080/02723646.2017.1387427.

    Article  Google Scholar 

  23. Godfrey, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(February), 812–818. https://doi.org/10.1126/science.1185383.

    CAS  Article  Google Scholar 

  24. Gregorich, E. G., Greer, K. J., Anderson, D. W., & Liang, B. C. (1998). Carbon distribution and losses: erosion and deposition effects. Soil & Tillage Research, 47(3–4), 291–302. https://doi.org/10.1016/S0167-1987(98)00117-2.

    Article  Google Scholar 

  25. Hunke, P., Roller, R., Zeilhofer, P., Schröder, B., & Mueller, E. N. (2015). Soil changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Regional, 4, 31–43. https://doi.org/10.1016/j.geodrs.2014.12.001.

    Article  Google Scholar 

  26. Johnson, M. A., Saraiva, P. M., & Coelho, D. (1999). The role of gallery forests in the distribution of cerrado mammals. Revista Brasileira de Biologia, 59(3), 421–427. https://doi.org/10.1590/s0034-71081999000300006.

    Article  Google Scholar 

  27. Klink, C. A., & Joly, C. A. (1989). Identification and distribution of C3 and C4 grasses in open and shaded habitats in Sao Paulo State, Brazil. Biotropica, 21(1), 30–34. https://doi.org/10.2307/2388438.

    Article  Google Scholar 

  28. Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution, 29(2), 107–116. https://doi.org/10.1016/j.tree.2013.12.001.

    Article  Google Scholar 

  29. Ledo, R. M. D., & Colli, G. R. (2016). Silent death: the New Brazilian Forest Code does not protect lizard assemblages in Cerrado riparian forests. South American Journal of Herpetology, 11(2), 98–109. https://doi.org/10.2994/sajh-d-16-00025.1.

    Article  Google Scholar 

  30. Lima, J. E. F. W., de Gois Aquino, F., Chaves, T. A., & Lorz, C. (2017). Development of a spatially explicit approach for mapping ecosystem services in the Brazilian Savanna—MapES. Ecological Indicators, 82(July), 513–525. https://doi.org/10.1016/j.ecolind.2017.07.028.

    Article  Google Scholar 

  31. Liu, C., Li, Z., Chang, X., Nie, X., Liu, L., Xiao, H., Wang, D., Peng, H., & Zeng, G. (2018). Apportioning source of erosion-induced organic matter in the hilly-gully region of loess plateau in China: insight from lipid biomarker and isotopic signature analysis. Science of the Total Environment, 621, 1310–1319. https://doi.org/10.1016/j.scitotenv.2017.10.097.

    CAS  Article  Google Scholar 

  32. Lowrance, R., Todd, R., Fail, J., Hendrickson, O., Leonard, R., & Asmussen, L. (1984). Riparian forests as nutrient filters in agricultural watersheds. BioScience, 34(6), 374–377.

    Article  Google Scholar 

  33. McCorkle, E. P., Berhe, A. A., Hunsaker, C. T., Johnson, D. W., McFarlane, K. J., Fogel, M. L., & Hart, S. C. (2016). Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes. Chemical Geology, 445, 172–184. https://doi.org/10.1016/j.chemgeo.2016.04.025.

    CAS  Article  Google Scholar 

  34. Montanarella, L., Pennock, D. J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Young Hong, S., Vijarnsorn, P., Zhang, G. L., Arrouays, D., Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henriquez, C. R., de Lourdes Mendonça-Santos, M., Taboada, M., Espinosa-Victoria, D., AlShankiti, A., AlaviPanah, S. K., Elsheikh, E. A. E. M., Hempel, J., Camps Arbestain, M., Nachtergaele, F., & Vargas, R. (2016). World’s soils are under threat. Soil, 2(1), 79–82. https://doi.org/10.5194/soil-2-79-2016.

    CAS  Article  Google Scholar 

  35. Moraes, A. B., Wilhelm, A. E., Boelter, T., Stenert, C., Schulz, U. H., & Maltchik, L. (2014). Reduced riparian zone width compromises aquatic macroinvertebrate communities in streams of southern Brazil. Environmental Monitoring and Assessment, 186(11), 7063–7074. https://doi.org/10.1007/s10661-014-3911-6.

    CAS  Article  Google Scholar 

  36. Nadeu, E., Berhe, A. A., De Vente, J., & Boix-Fayos, C. (2012). Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach. Biogeosciences, 9(3), 1099–1111. https://doi.org/10.5194/bg-9-1099-2012.

    CAS  Article  Google Scholar 

  37. Nóbrega, R. L. B., Guzha, A. C., Torres, G. N., Kovacs, K., Lamparter, G., Amorim, R. S. S., Couto, E., & Gerold, G. (2017). Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS One, 12(6), 1–22. https://doi.org/10.1371/journal.pone.0179414.

    CAS  Article  Google Scholar 

  38. Opdam, P. (2016). Bridging the gap between ecosystem services and landscape planning. In M. Potschin, R. Haines-Young, R. U. Fish, & R. K. Turner (Eds.), Handbook of ecosystem services (pp. 564–567). London and New York: Routledge.

    Google Scholar 

  39. Parron, L. M., Bustamante, M. M. C., & Markewitz, D. (2011). Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of central Brazil. Biogeochemistry, 105(1), 89–104. https://doi.org/10.1007/s10533-010-9537-z.

    CAS  Article  Google Scholar 

  40. Pires, L. F., Bacchi, O. O. S., Correchel, V., Reichardt, K., & Filippe, J. (2009). Riparian forest potential to retain sediment and carbon evaluated by the 137Cs fallout and carbon isotopic ratio techniques. Anais da Academia Brasileira de Ciências, 81(2), 271–279. https://doi.org/10.1590/S0001-37652009000200013.

    CAS  Article  Google Scholar 

  41. Ribeiro, J. F., & Walter, B. M. T. (1998). Fitofisionomias do bioma Cerrado. Cerrado: ambiente e flora, 89–166.

  42. Salemi, L. F., Groppo, J. D., Trevisan, R., de Moraes, J. M., de Barros Ferraz, S. F., Villani, J. P., Duarte-Neto, P. J., & Martinelli, L. A. (2013). Land-use change in the Atlantic rainforest region: consequences for the hydrology of small catchments. Journal of Hydrology, 499, 100–109. https://doi.org/10.1016/j.jhydrol.2013.06.049.

    Article  Google Scholar 

  43. Salemi, L. F., Lins, S. R. M., de Campos Ravagnani, E., Magioli, M., Martinez, M. G., Guerra, F., et al. (2016). Past and present land use influences on tropical riparian zones: an isotopic assessment with implications for riparian forest width determination. Biota Neotropica, 16(2). https://doi.org/10.1590/1676-0611-BN-2015-0133.

  44. Sano, E. E., Rodrigues, A. A., Martins, E. S., Bettiol, G. M., Bustamante, M. M. C., Bezerra, A. S., Couto Jr., A. F., Vasconcelos, V., Schüler, J., & Bolfe, E. L. (2019). Cerrado ecoregions: a spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. Journal of Environmental Management, 232(November 2018), 818–828. https://doi.org/10.1016/j.jenvman.2018.11.108.

    Article  Google Scholar 

  45. Seiffert, N. F. (1984). Gramíneas Forrageiras do Gênero Brachiaria. EMBRAPA, CNPGC, 1–74.

  46. SIEG. (2017). Download shapefile: Tipos de Solo do Estado de Goiás. Escala 1:100000. http://www.sieg.go.gov.br/siegdownloads/. Accessed 15 Nov 2019.

  47. Silva-Júnior, M. C. (2001). Comparação entre matas de galeria do Distrito Federal e a efetividade do Código Florestal na proteção da sua diversidade arbórea. Acta Botânica Brasílica, 15(1), 139–146.

    Article  Google Scholar 

  48. Soil Science Division Staff. (1993). Soil survey manual. In C. Ditzler, K. Scheffe, & H. C. Monger (Eds.), Government Printing Office. Washington: U.S. Department of Agriculture Handbook No. 18, U.S..

    Google Scholar 

  49. Sparovek, G., Beatriz Lima Ranieri, S., Gassner, A., Clerice De Maria, I., Schnug, E., Ferreira Dos Santos, R., & Joubert, A. (2002). A conceptual framework for the definition of the optimal width of riparian forests. Agriculture, Ecosystems and Environment, 90(2), 169–175. https://doi.org/10.1016/S0167-8809(01)00195-5.

    Article  Google Scholar 

  50. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264. https://doi.org/10.1073/pnas.1116437108.

    Article  Google Scholar 

  51. Tubelis, D. P., Cowling, A., & Donnelly, C. (2004). Landscape supplementation in adjacent savannas and its implications for the design of corridors for forest birds in the central Cerrado, Brazil. Biological Conservation, 118(3), 353–364. https://doi.org/10.1016/j.biocon.2003.09.014.

    Article  Google Scholar 

  52. Valera, C. A., Pissarra, T. C. T., Filho, M. V. M., do Valle Júnior, R. F., Oliveira, C. F., Moura, J. P., et al. (2019). The buffer capacity of riparian vegetation to control water quality in anthropogenic catchments from a legally protected area: a critical view over the Brazilian new forest code. Water (Switzerland), 11(3), 549. https://doi.org/10.3390/w11030549.

    CAS  Article  Google Scholar 

  53. Veldkamp, E. (1994). Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Science Society of America Journal, 58(1), 175–180.

    Article  Google Scholar 

  54. Vidon, P. G. F., & Hill, A. R. (2004). Landscape controls on the hydrology of stream riparian zones. Journal of Hydrology, 292(1–4), 210–228. https://doi.org/10.1016/j.jhydrol.2004.01.005.

    Article  Google Scholar 

  55. Zhang, R. (1997). Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61(4), 1024–1030. https://doi.org/10.2136/sssaj1997.03615995006100040005x.

    CAS  Article  Google Scholar 

  56. Zhang, X., Liu, X., Zhang, M., Dahlgren, R. A., & Eitzel, M. (2010). A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. Journal of Environmental Quality, 39(1), 76–84. https://doi.org/10.2134/jeq2008.0496.

    CAS  Article  Google Scholar 

  57. Zimmermann, B., & Elsenbeer, H. (2009). The near-surface hydrological consequences of disturbance and recovery: a simulation study. Journal of Hydrology, 364(1–2), 115–127. https://doi.org/10.1016/j.jhydrol.2008.10.016.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq for the scholarship granted to the first author. We also thank Jill Haring for translating the manuscript.

Funding

The fieldwork and laboratory analysis performed in this work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, (23038.006832/2014-11: Edital CAPES 25/2014 – Pró-Forenses).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanna Gomes Cordeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 60 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cordeiro, G.G., Vasconcelos, V., Salemi, L.F. et al. Factors affecting the effectiveness of riparian buffers in retaining sediment: an isotopic approach. Environ Monit Assess 192, 735 (2020). https://doi.org/10.1007/s10661-020-08705-4

Download citation

Keywords

  • Carbon stable isotopes
  • Cerrado
  • Pasture
  • Riparian forest width
  • Slope