Skip to main content

Advertisement

Log in

Probabilistic human health risk assessment associated with fluoride and arsenic co-occurrence in drinking water from the metropolitan area of San Luis Potosí, Mexico

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A major public health concern in Mexico is the natural contamination of groundwater with fluoride and arsenic. Therefore, this work aimed to evaluate the magnitude of human health risk after determining fluoride and arsenic concentrations in groundwater samples (n = 50) from the Metropolitan area of the city of San Luis Potosi, Mexico. Fluoride levels in water were determined via a potentiometric method using an ion-selective electrode. Arsenic concentrations in water samples were determined with an Atomic Absorption technique. Subsequently, a probabilistic health risk assessment was developed (Monte Carlo Analysis). Fluoride levels in water ranged from 0.20 to 3.50 mg/L. For arsenic, the mean level found in the assessed water samples was 15.5 ± 5.50 μg/L (range: 2.50–30.0 μg/L). In addition, when the probabilistic health risk assessment was completed, a mean HI (cumulative hazardous index) of higher than 1 was detected, indicating a high NCR (non-carcinogenic risk) for children and adults. According to the results found in this study, exposure protection campaigns are imperative in the Metropolitan area of the city of San Luis Potosí, Mexico, to successfully diminish exposure to arsenic and fluoride and, as a consequence, decrease the NCR in the population living in that region of Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alarcon-Herrera, M. T., Martin-Alarcon, D. A., Gutierrez, M., Reynoso-Cuevas, L., Martin-Dominguez, A., Olmos-Marquez, M. A., & Bundschuh, J. (2019). Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. The Science of the Total Environment, 698, 134168. https://doi.org/10.1016/j.scitotenv.2019.134168.

    Article  CAS  Google Scholar 

  • Alarcon-Herrera, M. T., Bundschuh, J., Nath, B., Nicolli, H. B., Gutierrez, M., Reyes-Gomez, V. M., et al. (2013). Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. Journal of Hazardous Materials, 262, 960–969. https://doi.org/10.1016/j.jhazmat.2012.08.005.

    Article  CAS  Google Scholar 

  • Arcega-Cabrera, F., Fargher, L. F., Oceguera-Vargas, I., Norena-Barroso, E., Yanez-Estrada, L., Alvarado, J., et al. (2017). Water consumption as source of arsenic, chromium, and mercury in children living in rural Yucatan, Mexico: blood and urine levels. Bulletin of Environmental Contamination and Toxicology, 99(4), 452–459. https://doi.org/10.1007/s00128-017-2147-x.

    Article  CAS  Google Scholar 

  • Barton, H. A., Cogliano, V. J., Flowers, L., Valcovic, L., Setzer, R. W., & Woodruff, T. J. (2005). Assessing susceptibility from early-life exposure to carcinogens. Environmental Health Perspectives, 113(9), 1125–1133. https://doi.org/10.1289/ehp.7667.

    Article  CAS  Google Scholar 

  • Boyle, D. R., & Chagnon, M. (1995). An incidence of skeletal fluorosis associated with groundwaters of the maritime carboniferous basin, Gaspe region, Quebec, Canada. Environmental Geochemistry and Health, 17(1), 5–12. https://doi.org/10.1007/BF00188625.

    Article  CAS  Google Scholar 

  • Cardenas-Gonzalez, M., Osorio-Yanez, C., Gaspar-Ramirez, O., Pavkovic, M., Ochoa-Martinez, A., Lopez-Ventura, D., et al. (2016). Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environmental Research, 150, 653–662. https://doi.org/10.1016/j.envres.2016.06.032.

    Article  CAS  Google Scholar 

  • Choi, A. L., Sun, G., Zhang, Y., & Grandjean, P. (2012). Developmental fluoride neurotoxicity: A systematic review and meta-analysis. Environmental Health Perspectives, 120(10), 1362–1368. https://doi.org/10.1289/ehp.1104912.

    Article  CAS  Google Scholar 

  • Chouhan, S., & Flora, S. J. S. (2010). Arsenic and fluoride: Two major ground water pollutants. Indian Journal of Experimental Biology, 48(7), 666–678.

    CAS  Google Scholar 

  • Djahed, B., Taghavi, M., Farzadkia, M., Norzaee, S., & Miri, M. (2018). Stochastic exposure and health risk assessment of rice contamination to the heavy metals in the market of Iranshahr, Iran. Food and Chemical Toxicology, 115, 405–412. https://doi.org/10.1016/j.fct.2018.03.040.

    Article  CAS  Google Scholar 

  • Duderstadt, K. G. (2009). Chemical policy and the impact on child health. Journal of pediatric health care: official publication of National Association of Pediatric Nurse Associates & Practitioners, 23(6), 421–424. https://doi.org/10.1016/j.pedhc.2009.08.005.

    Article  Google Scholar 

  • Fallahzadeh, R. A., Khosravi, R., Dehdashti, B., Ghahramani, E., Omidi, F., Adli, A., & Miri, M. (2018a). Spatial distribution variation and probabilistic risk assessment of exposure to chromium in ground water supplies; a case study in the east of Iran. Food and Chemical Toxicology, 115, 260–266. https://doi.org/10.1016/j.fct.2018.03.019.

    Article  CAS  Google Scholar 

  • Fallahzadeh, R. A., Miri, M., Taghavi, M., Gholizadeh, A., Anbarani, R., Hosseini-Bandegharaei, A., Ferrante, M., & Oliveri Conti, G. (2018b). Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water. Food and Chemical Toxicology, 113, 314–321. https://doi.org/10.1016/j.fct.2018.02.001.

    Article  CAS  Google Scholar 

  • Figoli, A., Fuoco, I., Apollaro, C., Chabane, M., Mancuso, R., Gabriele, B., Rosa, R. D., Vespasiano, G., Barca, D., & Criscuoli, A. (2020). Arsenic-contaminated groundwaters remediation by nanofiltration. Separation and Purification Technology, 238, 116461. https://doi.org/10.1016/j.seppur.2019.116461.

    Article  CAS  Google Scholar 

  • Forum, R. A., & Agency, U. S. E. P. (1992). Guidelines for 634 exposure assessment., 57(May), 22888–22938. https://www.epa.gov/sites/production/files/2014-11/documents/guidelines_exp_assessment.pdf. Accessed 17 Oct 2020.

  • Garcia-Rico, L., Meza-Figueroa, D., Jay Gandolfi, A., Del Rivero, C. I., Martinez-Cinco, M. A., & Meza-Montenegro, M. M. (2019). Health risk assessment and urinary excretion of children exposed to arsenic through drinking water and soils in Sonora, Mexico. Biological Trace Element Research, 187(1), 9–21. https://doi.org/10.1007/s12011-018-1347-5.

    Article  CAS  Google Scholar 

  • Goren, A. Y., Kobya, M., & Oncel, M. S. (2020). Arsenite removal from groundwater by aerated electrocoagulation reactor with Al ball electrodes: Human health risk assessment. Chemosphere, 251, 126363. https://doi.org/10.1016/j.chemosphere.2020.126363.

    Article  CAS  Google Scholar 

  • Grimaldo, M., Borja-Aburto, V. H., Ramirez, A. L., Ponce, M., Rosas, M., & Diaz-Barriga, F. (1995). Endemic fluorosis in San Luis Potosi, Mexico. I. Identification of risk factors associated with human exposure to fluoride. Environmental Research, 68(1), 25–30. https://doi.org/10.1006/enrs.1995.1004.

    Article  CAS  Google Scholar 

  • Guissouma, W., Hakami, O., Al-Rajab, A. J., & Tarhouni, J. (2017). Risk assessment of fluoride exposure in drinking water of Tunisia. Chemosphere, 177, 102–108. https://doi.org/10.1016/j.chemosphere.2017.03.011.

    Article  CAS  Google Scholar 

  • Irigoyen-Camacho, M. E., Garcia Perez, A., Mejia Gonzalez, A., & Huizar Alvarez, R. (2016). Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico. The Science of the Total Environment, 541, 512–519. https://doi.org/10.1016/j.scitotenv.2015.09.085.

    Article  CAS  Google Scholar 

  • Jarquin-Yneza, L., Alegria-Torres, J. A., Castillo, C. G., & de Jesus Mejia-Saavedra, J. (2018). Dental fluorosis and a polymorphism in the COL1A2 gene in Mexican children. Archives of Oral Biology, 96, 21–25. https://doi.org/10.1016/j.archoralbio.2018.08.010.

    Article  CAS  Google Scholar 

  • Jia, H., Qian, H., Qu, W., Zheng, L., Feng, W., & Ren, W. (2019). Fluoride occurrence and human health risk in drinking water Wells from southern edge of Chinese loess plateau. International Journal of Environmental Research and Public Health, 16(10), 1683. https://doi.org/10.3390/ijerph16101683.

    Article  CAS  Google Scholar 

  • Jiménez-Córdova, M. I., González-Horta, C., Ayllón-Vergara, J. C., Arreola-Mendoza, L., Aguilar-Madrid, G., Villareal-Vega, E. E., Barrera-Hernández, Á., Barbier, O. C., & del Razo, L. M. (2019). Evaluation of vascular and kidney injury biomarkers in Mexican children exposed to inorganic fluoride. Environmental Research, 169(October 2018), 220–228. https://doi.org/10.1016/j.envres.2018.10.028.

    Article  CAS  Google Scholar 

  • Jimenez-Cordova, M. I., Sanchez-Pena, L. C., Barrera-Hernandez, A., Gonzalez-Horta, C., Barbier, O. C., & Del Razo, L. M. (2019). Fluoride exposure is associated with altered metabolism of arsenic in an adult Mexican population. The Science of the Total Environment, 684, 621–628. https://doi.org/10.1016/j.scitotenv.2019.05.356.

    Article  CAS  Google Scholar 

  • Karami, M. A., Fakhri, Y., Rezania, S., Alinejad, A. A., Mohammadi, A. A., Yousefi, M., Ghaderpoori, M., Saghi, M. H., & Ahmadpour, M. (2019). Non-carcinogenic health risk assessment due to fluoride exposure from tea consumption in Iran using Monte Carlo simulation. International Journal of Environmental Research and Public Health, 16(21), 4261. https://doi.org/10.3390/ijerph16214261.

    Article  CAS  Google Scholar 

  • Kumar, M., Das, A., Das, N., Goswami, R., & Singh, U. K. (2016). Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, northeastern India. Chemosphere, 150, 227–238. https://doi.org/10.1016/j.chemosphere.2016.02.019.

    Article  CAS  Google Scholar 

  • Kumar, M., Goswami, R., Patel, A. K., Srivastava, M., & Das, N. (2020). Scenario, perspectives and mechanism of arsenic and fluoride co-occurrence in the groundwater: a review. Chemosphere, 249, 126126. https://doi.org/10.1016/j.chemosphere.2020.126126.

    Article  CAS  Google Scholar 

  • Lian-Fang, W., & Jian-Zhong, H. (1995). Outline of control practice of endemic fluorosis in China. Social Science & Medicine, 41(8), 1191–1195. https://doi.org/10.1016/0277-9536(94)00429-W.

    Article  Google Scholar 

  • Limón-Pacheco, J. H., Jiménez-Córdova, M. I., Cárdenas-González, M., Sánchez Retana, I. M., Gonsebatt, M. E., & Del Razo, L. M. (2018). Potential co-exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children. Annals of Global Health, 84(2), 257–273. https://doi.org/10.29024/aogh.913.

    Article  Google Scholar 

  • Ma, Q., Huang, H., Sun, L., Zhou, T., Zhu, J., Cheng, X., Duan, L., Li, Z., Cui, L., & Ba, Y. (2017). Gene-environment interaction: Does fluoride influence the reproductive hormones in male farmers modified by ERalpha gene polymorphisms? Chemosphere, 188, 525–531. https://doi.org/10.1016/j.chemosphere.2017.08.166.

    Article  CAS  Google Scholar 

  • Marimon, M. P. C., Roisenberg, A., Suhogusoff, A. V., & Viero, A. P. (2013). Hydrogeochemistry and statistical analysis applied to understand fluoride provenance in the Guarani Aquifer System, Southern Brazil. Environmental Geochemistry and Health, 35(3), 391–403. https://doi.org/10.1007/s10653-012-9502-y.

    Article  CAS  Google Scholar 

  • Martinez-Acuna, M. I., Mercado-Reyes, M., Alegria-Torres, J. A., & Mejia-Saavedra, J. J. (2016). Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, Mexico. Environmental Monitoring and Assessment, 188(8), 476. https://doi.org/10.1007/s10661-016-5453-6.

    Article  CAS  Google Scholar 

  • McClintock, T. R., Chen, Y., Bundschuh, J., Oliver, J. T., Navoni, J., Olmos, V., Lepori, E. V., Ahsan, H., & Parvez, F. (2012). Arsenic exposure in Latin America: biomarkers, risk assessments and related health effects. The Science of the Total Environment, 429, 76–91. https://doi.org/10.1016/j.scitotenv.2011.08.051.

    Article  CAS  Google Scholar 

  • Mendoza-Cano, O., Sanchez, R., Barrón-Quintana, J., Cuevas-Arellano, H. B., Escalante-Minakata, P., & Solano, R. (2017). Potential health risks from consumption of water with arsenic in Colima, Mexico., 59, 34–40.

  • Miri, M., Akbari, E., Amrane, A., Jafari, S. J., Eslami, H., Hoseinzadeh, E., Zarrabi, M., Salimi, J., Sayyad-Arbabi, M., & Taghavi, M. (2017). Health risk assessment of heavy metal intake due to fish consumption in the Sistan region, Iran. Environmental Monitoring and Assessment, 189(11), 583. https://doi.org/10.1007/s10661-017-6286-7.

    Article  CAS  Google Scholar 

  • Miri, M., Bhatnagar, A., Mahdavi, Y., Basiri, L., Nakhaei, A., Khosravi, R., Eslami, H., Ghasemi, S. M., Balarak, D., Alizadeh, A., Mohammadi, A., Derakhshan, Z., Fallahzadeh, R. A., & Taghavi, M. (2018). Probabilistic risk assessment of exposure to fluoride in most consumed brands of tea in the Middle East. Food and Chemical Toxicology, 115, 267–272. https://doi.org/10.1016/j.fct.2018.03.023.

    Article  CAS  Google Scholar 

  • Mohammadi, A. A., Yousefi, M., Yaseri, M., Jalilzadeh, M., & Mahvi, A. H. (2017). Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran. Scientific Reports, 7(1), 17300. https://doi.org/10.1038/s41598-017-17328-8.

    Article  CAS  Google Scholar 

  • Molina-Frechero, N., Nevarez-Rascon, M., Tremillo-Maldonado, O., Vergara-Onofre, M., Gutierrez-Tolentino, R., Gaona, E., et al. (2020). Environmental exposure of arsenic in groundwater associated to carcinogenic risk in underweight children exposed to fluorides. International Journal of Environmental Research and Public Health, 17(3). https://doi.org/10.3390/ijerph17030724.

  • Mukherjee, A., Adak, M. K., Upadhyay, S., Khatun, J., Dhak, P., Khawas, S., Ghorai, U. K., & Dhak, D. (2019). Efficient fluoride removal and dye degradation of contaminated water using Fe/Al/Ti oxide nanocomposite. ACS Omega, 4(6), 9686–9696. https://doi.org/10.1021/acsomega.9b00252.

    Article  CAS  Google Scholar 

  • Nieuwenhuijsen, M., Paustenbach, D., & Duarte-Davidson, R. (2006). New developments in exposure assessment: The impact on the practice of health risk assessment and epidemiological studies. Environment International, 32(8), 996–1009. https://doi.org/10.1016/j.envint.2006.06.015.

    Article  CAS  Google Scholar 

  • Perez-Maldonado, I. N., Ochoa-Martinez, A. C., Lopez-Ramirez, M. L., & Varela-Silva, J. A. (2019). Urinary levels of 1-hydroxypyrene and health risk assessment in children living in Mexican communities with a high risk of contamination by polycyclic aromatic hydrocarbons (PAHs). International Journal of Environmental Health Research, 29(3), 348–357. https://doi.org/10.1080/09603123.2018.1549727.

    Article  CAS  Google Scholar 

  • Perez-Maldonado, I. N., Ochoa Martinez, A. C., Ruiz-Vera, T., Orta-Garcia, S. T., & Varela-Silva, J. A. (2017). Human health risks assessment associated with polychlorinated biphenyls (PCBs) in soil from different contaminated areas of Mexico. Bulletin of Environmental Contamination and Toxicology, 99(3), 338–343. https://doi.org/10.1007/s00128-017-2148-9.

    Article  CAS  Google Scholar 

  • Perez-Perez, N., Torres-Mendoza, N., Borges-Yanez, A., & Irigoyen-Camacho, M. E. (2014). Dental fluorosis: Concentration of fluoride in drinking water and consumption of bottled beverages in school children. The Journal of Clinical Pediatric Dentistry, 38(4), 338–344. https://doi.org/10.17796/jcpd.38.4.e77h557k0005077n.

    Article  CAS  Google Scholar 

  • Perez-Vazquez, F. J., Flores-Ramirez, R., Ochoa-Martinez, A. C., Orta-Garcia, S. T., Hernandez-Castro, B., Carrizalez-Yañez, L., & Pérez-Maldonado, I. N. (2015). Concentrations of persistent organic pollutants (POPs) and heavy metals in soil from San Luis Potosí, México. Environmental Monitoring and Assessment, 187(1). https://doi.org/10.1007/s10661-014-4119-5.

  • Pruneda-Alvarez, L. G., Perez-Vazquez, F. J., Ruiz-Vera, T., Ochoa-Martinez, A. C., Orta-Garcia, S. T., Jimenez-Avalos, J. A., & Perez-Maldonado, I. N. (2016). Urinary 1-hydroxypyrene concentration as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) in Mexican women from different hot spot scenarios and health risk assessment. Environmental Science and Pollution Research International, 23(7), 6816–6825. https://doi.org/10.1007/s11356-015-5918-0.

    Article  CAS  Google Scholar 

  • Rocha-Amador, D., Navarro, M. E., Carrizales, L., Morales, R., & Calderon, J. (2007a). Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cadernos De Saude Publica, 23(Suppl 4), S579–S587.

    Article  Google Scholar 

  • Rocha-Amador, D., Navarro, M. E., Carrizales, L., Morales, R., & Calderón, J. (2007b). Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cadernos De Saude Publica, 23(SUPPL. 4), 579–587. https://doi.org/10.1590/S0102-311X2007001600018.

    Article  Google Scholar 

  • Rocha-Amador, D. O., Calderon, J., Carrizales, L., Costilla-Salazar, R., & Perez-Maldonado, I. N. (2011). Apoptosis of peripheral blood mononuclear cells in children exposed to arsenic and fluoride. Environmental Toxicology and Pharmacology, 32(3), 399–405. https://doi.org/10.1016/j.etap.2011.08.004.

    Article  CAS  Google Scholar 

  • Rocha, R. A., Calatayud, M., Devesa, V., & Velez, D. (2017). Evaluation of exposure to fluoride in child population of North Argentina. Environmental Science and Pollution Research International, 24(27), 22040–22047. https://doi.org/10.1007/s11356-017-9010-9.

    Article  CAS  Google Scholar 

  • Ruiz-Vera, T., Pruneda-Alvarez, L. G., Perez-Vazquez, F. J., Ochoa-Martinez, A. C., Orta-Garcia, S. T., Ilizaliturri-Hernandez, C. A., & Perez-Maldonado, I. N. (2015). Using urinary 1-hydroxypyrene concentrations to evaluate polycyclic aromatic hydrocarbon exposure in women using biomass combustion as main energy source. Drug and Chemical Toxicology, 38(3), 349–354. https://doi.org/10.3109/01480545.2014.968932.

    Article  CAS  Google Scholar 

  • Tolkou, A. K., Mitrakas, M., Katsoyiannis, I. A., Ernst, M., & Zouboulis, A. I. (2019). Fluoride removal from water by composite Al/Fe/Si/Mg pre-polymerized coagulants: Characterization and application. Chemosphere, 231, 528–537. https://doi.org/10.1016/j.chemosphere.2019.05.183.

    Article  CAS  Google Scholar 

  • US EPA. (2009). Risk assessment guidance for superfund volume I: Human health evaluation manual (part F, supplemental guidance for inhalation risk assessment). Office of Superfund Remediation and Technology Innovation Environmental Protection Agency, I(January), 1–68. EPA-540-R-070-002.

  • Usepa (1993). Reference Dose (RfD): description and Use in Health Risk Assessments | Basic Information | IRIS | US EPA.

  • Weaver, V. M., Buckley, T. J., & Groopman, J. D. (1998). Approaches to environmental exposure assessment in children. Environmental Health Perspectives, 106(Suppl), 827–832. https://doi.org/10.1289/ehp.98106827.

    Article  Google Scholar 

  • Wu, B., Zhang, Y., Zhang, X.-X., & Cheng, S.-P. (2011). Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: quantitative analysis based on published monitoring data. Science of the Total Environment, 410–411, 112–118. https://doi.org/10.1016/j.scitotenv.2011.09.046.

    Article  CAS  Google Scholar 

  • Zhang, L. E., Huang, D., Yang, J., Wei, X., Qin, J., Ou, S., et al. (2017). Probabilistic risk assessment of Chinese residents’ exposure to fluoride in improved drinking water in endemic fluorosis areas. Environmental pollution (Barking, Essex : 1987), 222, 118–125. https://doi.org/10.1016/j.envpol.2016.12.074.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financed by a grant from: Programa Para el Desarrollo Profesional Docente (PRODEP), Secretaria de Educación Pública (SEP), Apoyo a la reincorporación de ex-becarios 2018, No. De proyecto; UAZ-EXB-400, 511-6/2019.-1007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván N. Pérez-Maldonado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Macias, J.C., Ochoa-Martínez, Á.C., Orta-García, S.T. et al. Probabilistic human health risk assessment associated with fluoride and arsenic co-occurrence in drinking water from the metropolitan area of San Luis Potosí, Mexico. Environ Monit Assess 192, 712 (2020). https://doi.org/10.1007/s10661-020-08675-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08675-7

Keywords

Navigation