Skip to main content

Advertisement

Log in

Monthly evapotranspiration estimation using optimal climatic parameters: efficacy of hybrid support vector regression integrated with whale optimization algorithm

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

For effective planning of irrigation scheduling, water budgeting, crop simulation, and water resources management, the accurate estimation of reference evapotranspiration (ETo) is essential. In the current study, the hybrid support vector regression (SVR) coupled with Whale Optimization Algorithm (SVR-WOA) was employed to estimate the monthly ETo at Algiers and Tlemcen meteorological stations positioned in the north of Algeria under three different optimal input scenarios. Monthly climatic parameters, i.e., solar radiation (Rs), wind speed (Us), relative humidity (RH), and maximum and minimum air temperatures (Tmax and Tmin) of 14 years (2000–2013), were obtained from both stations. The accuracy of the hybrid SVR-WOA model was appraised against hybrid SVR-MVO (Multi-Verse Optimizer), and SVR-ALO (Ant Lion Optimizer) models through performance measures, i.e., mean absolute error (MAE), root-mean-square error (RMSE), index of scattering (IOS), index of agreement (IOA), Pearson correlation coefficient (PCC), Nash-Sutcliffe efficiency (NSE), and graphical interpretation (time-variation and scatter plots, radar chart, and Taylor diagram). The results showed that the SVR-WOA model performed superior to the SVR-MVO and SVR-ALO models at both stations in all scenarios. The SVR-WOA-1 model with five inputs (i.e., Tmin, Tmax, RH, Us, Rs: scenario-1) had the lowest value of MAE = 0.0658/0.0489 mm/month, RMSE = 0.0808/0.0617 mm/month, IOS = 0.0259/0.0165, and the highest value of NSE = 0.9949/0.9989, PCC = 0.9975/0.9995, and IOA = 0.9987/0.9997 for testing period at both stations, respectively. The proposed hybrid SVR-WOA model was found to be more appropriate and efficient in comparison to SVR-MVO and SVR-ALO models for estimating monthly ETo in the study region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Malik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhamarine, Y., Malik, A., Pandey, K. et al. Monthly evapotranspiration estimation using optimal climatic parameters: efficacy of hybrid support vector regression integrated with whale optimization algorithm. Environ Monit Assess 192, 696 (2020). https://doi.org/10.1007/s10661-020-08659-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08659-7

Keywords

Navigation