Estimation of evaporation from saline water

Abstract

Evaporation, as the main source of water loss from closed lakes, makes a significant contribution to the water balance equation of the lake and can lead to changes in the chemical composition thereof. The objective of the study was to develop an equation for estimation of evaporation from the water surface with different depths and concentrations. To that end, 48 barrels were used to model evaporation at 6 different depths and 8 different concentrations of salinity. The experiments have been conducted in the same meteorological condition for all the barrels near the Urmia Lake. Data were collected in March 1, 2019, to Aug 31, 2019. Different equations fitted to data for each concentrations of salinity separately with different depths, and the equations with the least errors were selected. A model was then developed for the estimation of evaporation, considering the effect of salinity and depth, and the results were compared with daily measurements. The results were evaluated using the root mean square error (RMSE), correlation coefficient (CC), and Nash-Sutcliffe efficiency coefficient (NS). The results indicated that evaporation (Horizontal row) from water surface with high concentrations of salinity to low concentrations of salinity in different depths had an incremental trend. However, it can be seen in the vertical row that evaporation increased from low depth to high depth, and then decreased at a certain depth (120 cm) while the maximum evaporation rate belonged to 90-cm barrels for each concentration of salinity (in the vertical and horizontal row). At the end, the comparison of evaporation computed from the model and measured data showed that the model estimated evaporation at different depths and concentrations of salinity satisfactorily.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aghelpour, P., Mohammadi, B., & Biazar, S. M. (2019). Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA. Theoretical and Applied Climatology, 138(3–4), 1471–1480.

    Article  Google Scholar 

  2. AL-Khlaifat, A. L. (2008). Dead Sea rate of evaporation. American Journal of Applied Sciences, 5(8), 934–942.

    CAS  Article  Google Scholar 

  3. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.

    Google Scholar 

  4. Ashrafzadeh, A., Ghorbani, M. A., Biazar, S. M., & Yaseen, Z. M. (2019). Evaporation process modelling over northern Iran: application of an integrative data-intelligence model with the krill herd optimization algorithm. Hydrological Sciences Journal, 64(15), 1843–1856.

    Article  Google Scholar 

  5. Ashrafzadeh, A., Kişi, O., Aghelpour, P., Biazar, S. M., & Masouleh, M. A. (2020). Comparative study of time series models, support vector machines, and GMDH in forecasting long-term evapotranspiration rates in northern Iran. Journal of Irrigation and Drainage Engineering, 146(6), 04020010.

    Article  Google Scholar 

  6. Ashrafzadeh, A., Malik, A., Jothiprakash, V., Ghorbani, M. A., & Biazar, S. M. (2018). Estimation of daily pan evaporation using neural networks and meta-heuristic approaches. ISH Journal of Hydraulic Engineering, 1–9.

  7. Asmar, B. N., & Ergenzinger, P. (1999). Estimation of evaporation from the Dead Sea. Hydrological Processes, 13(17), 2743–2750.

    Article  Google Scholar 

  8. Biazar, S. M., Dinpashoh, Y., & Singh, V. P. (2019). Sensitivity analysis of the reference crop evapotranspiration in a humid region. Environmental Science and Pollution Research, 26(31), 32517–32544.

    Article  Google Scholar 

  9. Biazar, S. M., & Ferdosi, F. B. (2020a). An investigation on spatial and temporal trends in frost indices in Northern Iran. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-020-03248-7.

  10. Biazar, S. M., Rahmani, V., Isazadeh, M., Kisi, O., & Dinpashoh, Y. (2020). New input selection procedure for machine learning methods in estimating daily global solar radiation. Arabian Journal of Geosciences, 13, 431.

    CAS  Article  Google Scholar 

  11. Biazar, S. M., Fard, A. F., Singh, V. P., Dinpashoh, Y., & Majnooni-Heris, A. (2020c). Estimation of Evaporation from Saline-Water with More Efficient Input Variables. Pure and Applied Geophysics, 1–21.

  12. Deo, R. C., Ghorbani, M. A., Samadianfard, S., Maraseni, T., Bilgili, M., & Biazar, M. (2018). Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data. Renewable Energy, 116, 309–323.

  13. Dinpashoh, Y., Singh, V. P., Biazar, S. M., & Kavehkar, S. (2019). Impact of climate change on streamflow timing (case study: Guilan Province). Theoretical and Applied Climatology, 138(1–2), 65–76.

    Article  Google Scholar 

  14. El-Dessouky, H. T., Ettouney, H. M., Alatiqi, I. M., & Al-Shamari, M. A. (2002). Evaporation rates from fresh and saline water in moving air. Industrial & Engineering Chemistry Research, 41(3), 642–650.

    CAS  Article  Google Scholar 

  15. El-Sebaii, A. A., Ramadan, M. R. I., Aboul-Enein, S., & Khallaf, A. M. (2011). History of the solar ponds: a review study. Renewable and Sustainable Energy Reviews, 15(6), 3319–3325.

    CAS  Article  Google Scholar 

  16. Estévez, J., Gavilán, P., & Berengena, J. (2009). Sensitivity analysis of a Penman–Monteith type equation to estimate reference evapotranspiration in southern Spain. Hydrological Processes: An International Journal, 23(23), 3342–3353.

    Article  Google Scholar 

  17. Gianniou, S. K., & Antonopoulos, V. Z. (2007). Evaporation and energy budget in Lake Vegoritis, Greece. Journal of Hydrology, 345(3–4), 212–223.

    Article  Google Scholar 

  18. Giestas, M., Pina, H., & Joyce, A. (1996). The influence of radiation absorption on solar pond stability. International Journal of Heat and Mass Transfer, 39(18), 3873–3885.

    CAS  Article  Google Scholar 

  19. Guo, Y., Zhang, Y., Ma, N., Xu, J., & Zhang, T. (2019). Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion. Atmospheric Research, 216, 141–150.

    Article  Google Scholar 

  20. Hamdani, I., Assouline, S., Tanny, J., Lensky, I. M., Gertman, I., Mor, Z., & Lensky, N. G. (2018). Seasonal and diurnal evaporation from a deep hypersaline lake: The Dead Sea as a case study. Journal of Hydrology, 562, 155–167.

    Article  Google Scholar 

  21. Hull, J., Nielsen, C. E., & Golding, P. (1989). Salinity gradient solar ponds. Boca Raton, FL: CRC Press.

  22. Isazadeh, M., Biazar, S. M., & Ashrafzadeh, A. (2017). Support vector machines and feed-forward neural networks for spatial modeling of groundwater qualitative parameters. Environmental Earth Sciences, 76(17), 610.

    Article  Google Scholar 

  23. Khaledian, M. R., Isazadeh, M., Biazar, S. M., & Pham, Q. B. (2020). Simulating Caspian Sea surface water level by artificial neural network and support vector machine models. Acta Geophysica, 1–11.

  24. Kisi, O., Shiri, J., Karimi, S., Shamshirband, S., Motamedi, S., Petković, D., & Hashim, R. (2015). A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Applied Mathematics and Computation, 270, 731–743.

    Article  Google Scholar 

  25. Kokya, B. A., & Kokya, T. A. (2008). Proposing a formula for evaporation measurement from salt water resources. Hydrological Processes: An International Journal, 22(12), 2005–2012.

    CAS  Article  Google Scholar 

  26. Kurt, H., Halici, F., & Binark, A. (2000). Solar pond conception: Experimental and theoretical studies. Energ. Convers. Manage., 41(9), 939–951.

    CAS  Article  Google Scholar 

  27. Lee, C. H. (1927). Discussion of evaporation on reclamation projects. American Society of Civil Engineers Transactions, 90, 340–343.

    Google Scholar 

  28. Lide, D. R. (Ed). (2005) CRC handbook of chemistry and physics 86th ed. CRC Publishing: Boca Raton, FL pp 8.

  29. Lin, S. T., & Sandler, S. I. (1999). Prediction of octanol− water partition coefficients using a group contribution solvation model. Industrial & Engineering Chemistry Research, 38(10), 4081–4091.

  30. Ma, N., Szilagyi, J., Niu, G. Y., Zhang, Y., Zhang, T., Wang, B., & Wu, Y. (2016). Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion. Journal of Hydrology, 537, 27–35.

    Article  Google Scholar 

  31. Mansour, R. B., Nguyen, C. T., & Galanis, N. (2006). Transient heat and mass transfer and long-term stability of a salt-gradient solar pond. Mechanics research communications, 33(2), 233–249.

    Article  Google Scholar 

  32. Mor, Z., Assouline, S., Tanny, J., Lensky, I. M., & Lensky, N. G. (2018). Effect of water surface salinity on evaporation: The case of a diluted buoyant plume over the Dead Sea. Water Resources Research, 54(3), 1460–1475.

    CAS  Article  Google Scholar 

  33. Naganna, S. R., Deka, P. C., Ghorbani, M. A., Biazar, S. M., Al-Ansari, N., & Yaseen, Z. M. (2019). Dew point temperature estimation: application of artificial intelligence model integrated with nature-inspired optimization algorithms. Water, 11(4), 742.

    Article  Google Scholar 

  34. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282–290.

    Article  Google Scholar 

  35. Nozari, H., & Azadi, S. (2019). Experimental evaluation of artificial neural network for predicting drainage water and groundwater salinity at various drain depths and spacing. Neural Computing and Applications, 31(4), 1227–1236.

    Article  Google Scholar 

  36. Rabl, A., & Nielsen, C. E. (1975). Solar ponds for space heating. Solar Energy, 17(1), 1–12.

    Article  Google Scholar 

  37. Ruskowitz, J. A., Suárez, F., Tyler, S. W., & Childress, A. E. (2014). Evaporation suppression and solar energy collection in a salt-gradient solar pond. Solar Energy, 99, 36–46.

    Article  Google Scholar 

  38. Shiri, J., Shamshirband, S., Kisi, O., Karimi, S., Bateni, S. M., Nezhad, S. H. H., & Hashemi, A. (2016). Prediction of water-level in the Urmia Lake using the extreme learning machine approach. Water Resources Management, 30(14), 5217–5229.

    Article  Google Scholar 

  39. Suárez, F., Tyler, S. W., & Childress, A. E. (2010). A fully coupled, transient double-diffusive convective model for salt-gradient solar ponds. International Journal of Heat and Mass Transfer, 53(9-10), 1718–1730.

    Article  Google Scholar 

  40. Vaheddoost, B., & Kocak, K. (2019). Temporal dynamics of monthly evaporation in Lake Urmia. Theoretical and Applied Climatology, 137(3-4), 2451–2462.

    Article  Google Scholar 

  41. Wang, W., Lee, X., Xiao, W., Liu, S., Schultz, N., Wang, Y., & Zhao, L. (2018). Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nature Geoscience, 11(6), 410–414.

    CAS  Article  Google Scholar 

  42. Wurtsbaugh, W. A., Miller, C., Null, S. E., DeRose, R. J., Wilcock, P., Hahnenberger, M., Howe, F., & Moore, J. (2017). Decline of the world's saline lakes. Nature Geoscience, 10(11), 816–821.

    CAS  Article  Google Scholar 

  43. Young, A. A. (1947). Some recent evaporation investigations. Transactions American Geophysical Union, 28(2), 279–284.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Distinguished Professor John S. Selker (Oregon State University); Professor Reza Delirhasannia (University of Tabriz), Mr. Mohammad Isazadeh and Babak Mohammadpour for help us to complete this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyed Mostafa Biazar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biazar, S.M., Fard, A.F., Singh, V.P. et al. Estimation of evaporation from saline water. Environ Monit Assess 192, 694 (2020). https://doi.org/10.1007/s10661-020-08634-2

Download citation

Keywords

  • Evaporation
  • Equation
  • Different depth
  • Different Concentration
  • Saline water