Skip to main content
Log in

Effects of exogenous sulfur on maize (Zea mays L.) growth and Cd accumulation in Cd-contaminated plastic shed soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Cadmium (Cd) pollution in plastic shed soils has become increasingly severe, posing a great threat to human health and social stability. Phytoremediation of cadmium pollution is an environmentally friendly and inexpensive remediation method. In this study, maize (Zea mays L.) was selected as the phytoremediation crop by a potted method, and the bioavailability of cadmium was investigated by adding exogenous elemental sulfur. The relationships among the sulfur content, maize growth, cadmium accumulation, and soil parameters were systematically studied. The results showed that, with the supplement of sulfur, the soil pH and activities of soil enzymes (urease, catalase, and sucrase) decreased gradually, and the available heavy metals (Cd, Cr, Zn, and Cu) in soil showed an upward trend. The optimal cadmium enrichment was achieved under T2 by increasing both the biomass of the maize plant and the cadmium concentration in roots and stems. However, T3 and T4 significantly inhibited the growth of maize roots and shoots, leading to a much lower plant biomass compared with that of CK (sulfur-free treatment) and T2. In addition, the cumulative cadmium was not increased because of the low accumulation of cadmium in some parts of the plant. Correlation analyses showed that the sulfur content was negatively correlated with soil pH and maize biomass (P < 0.01), and the cadmium content of whole maize was positively correlated with the dry weight of maize (P < 0.05) and the cadmium content in roots and stems (P < 0.01). In summary, to optimize cadmium phytoremediation of the plastic shed soil, an appropriate concentration of sulfur should be selected in practical applications to ensure that the biomass of the maize is maximized, and the cadmium concentration in different parts of the maize is increased or stabilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agricultural Industry Standard of the People’s Republic of China (NY5294-2004).

  • Ali, N. A., Bernal, M. P., & Ater, M. (2002). Tolerance and bioaccumulation of copper in Phragmites australis and Zeamays. Plant and Soil, 239(1), 103–111.

    CAS  Google Scholar 

  • Bricker, T. J., Pichtel, J., Brown, H. J., & Simmons, M. (2001). Phytoextraction of Pb and Cd from superfund soil: Effects of amendments and croppings. Journal of Environmental Science and Health, Part A, 36(9), 1597–1610.

    CAS  Google Scholar 

  • Capaldi, F. R., Gratão, P. L., Reis, A. R., Lima, L. W., & Azevedo, R. A. (2015). Sulfur metabolism and stress defense responses in plants. Tropical Plant Biology, 8(3-4), 60–73.

    CAS  Google Scholar 

  • Chhajro, M. A., Rizwan, M. S., Huang, G. Y., Zhu, J., Kubar, K. A., & Hu, H. Q. (2016). Enhanced accumulation of cd in castor (Ricinus communis L) by soil-applied chelators. International Journal of Phytoremediation, 18(7), 664–670.

    CAS  Google Scholar 

  • Chiang, H. C., Lo, J. C., & Yeh, K. C. (2006). Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: A genomic survey with cDNA microarray. Environmental Science & Technology, 40, 6792–6798.

    CAS  Google Scholar 

  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.

    CAS  Google Scholar 

  • Cui, Y. S., Dong, Y. T., Li, H. F., & Wang, Q. R. (2004). Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize. Environment International, 30(3), 323–328.

    CAS  Google Scholar 

  • Dede, G., & Ozdemir, S. (2016). Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge. Journal of Environmental Management, 166, 103–108.

    CAS  Google Scholar 

  • Dias, M. C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Gonçalves, B., & Santos, C. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum, 35(4), 1281–1289.

    CAS  Google Scholar 

  • Fang, S., Liu, J., Liu, D., & Xie, B. (2010). Enzymatic activity and nutrient availability in the rhizosphere of poplar plantations treated with fresh grass mulch. Soil Science & Plant Nutrition, 56(3), 483–491.

    CAS  Google Scholar 

  • Feng, R. W., Wei, C. Y., Tu, S. X., Ding, Y. Z., & Song, Z. G. (2013). A dual role of Se on Cd toxicity: evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice. Biological Trace Element Research, 151(1), 113–121.

    CAS  Google Scholar 

  • Frankeberger, W. T., & Johanson, J. B. (1983). Method of measuring invertase activity in soils. Plant and Soil, 74(3), 301–311.

    Google Scholar 

  • Gruter, R., Costerousse, B., Bertoni, A., Mayer, J., Thonar, C., Frossard, E., Schulin, R., & Tandy, S. (2017). Green manure and long-term fertilization effects on soil zinc and cadmium availability and uptake by wheat (Triticum aestivum L.) at different growth stages. Science of the Total Environment, 599-600, 1330–1343.

    CAS  Google Scholar 

  • Hadi, F., Ali, N., & Ahmad, A. (2014). Enhanced phytoremediation of cadmium-contaminated soil by Parthenium hysterophorus plant: Effect of gibberellic acid (GA3) and synthetic chelator, alone and in combinations. Bioremediation Journal, 18(1), 46–55.

    CAS  Google Scholar 

  • Hoefer, C., Santner, J., Puschenreiter, M., & Wenzel, W. W. (2015). Localized metal solubilization in the rhizosphere of Salix smithiana upon sulfur application. Environmental Science & Technology, 49(7), 4522–4529.

    CAS  Google Scholar 

  • Hou, D. D., Wang, K., Liu, T., Wang, H. X., Lin, Z., Qian, J., Lu, L. L., & Tian, S. K. (2017). Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii. Environmental Science & Technology, 51(10), 5675–5684.

    CAS  Google Scholar 

  • Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H. R., Gupta, S. K., & Schulin, R. (2000). Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environmental Science & Technology, 34(9), 1778–1783.

    CAS  Google Scholar 

  • Lemanowicz, J. (2019). Activity of selected enzymes as markers of ecotoxicity in technogenic salinization soils. Environmental Science and Pollution Research, 26(13), 13014–13024.

    CAS  Google Scholar 

  • Li, T. Q., Yang, X. E., Lu, L. L., Islam, E., & He, Z. L. (2009). Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. Journal of Hazardous Materials, 169, 734–741.

    CAS  Google Scholar 

  • Li, L. Z., Liu, X. L., Peijnenburg, W. J. G. M., Zhao, J. M., Chen, X. B., Yu, J. B., & Wu, H. F. (2012). Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicology and Environmental Safety, 75, 1–7.

    Google Scholar 

  • Li, X., Lu, A. X., Wang, J. H., Ma, Z. H., Pan, L. G., Feng, X. Y., & Luan, Y. X. (2015). Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing. China. Ecotox. cotoxicology and Environmental Safety, 122, 214–220.

    Google Scholar 

  • Li, X. Z., Yu, H., Sun, X. W., Yang, J. T., Wang, D. C., Shen, L. F., Pan, Y. S., Wu, Y. C., Wang, Q., & Zhao, Y. (2019). Effects of sulfur application on cadmium bioaccumulation in tobacco and its possible mechanisms of rhizospheric microorganisms. Journal of Hazardous Materials, 368, 308–315.

    CAS  Google Scholar 

  • Liu, H. W., Wang, H. Y., Ma, Y. B., Wang, H. H., & Shi, Y. (2015). Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere, 144, 1960–1965.

    Google Scholar 

  • Lombi, E., Zhao, F. J., McGrath, S. P., Young, S. D., & Sacchi, G. A. (2001). Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytologist, 149, 53–60.

    CAS  Google Scholar 

  • Martínez, C., & Motto, H. (2000). Solubility of lead, zinc and copper added to mineral soils. Environmental. Pollution, 107(1), 153–158.

    Google Scholar 

  • Mattina, M. J. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental. Pollution, 124(3), 375–378.

    CAS  Google Scholar 

  • Monni, S., Salemaa, M., & Millar, N. (2000). The tolerance of Empetrum nigrum to copper and nickel. Environmental. Pollution, 109(2), 221–229.

    CAS  Google Scholar 

  • Rausch, T., & Wachter, A. (2005). Sulfur metabolism: a versatile platform for launching defence operations. Trends in Plant Science, 10(10), 503–509.

    CAS  Google Scholar 

  • Rayment, G. E., & Higginson, F. R. (1992). Australian laboratory handbook of soil and water chemical methods. Inkata Press. Melbourne, 3, 5–7.

    Google Scholar 

  • Roberge, M. R. (1978). Methodology of enzymes measurement and extraction. In R. G. Burns (Ed.), Soil enzymes (pp. 341–373). New York: Academic Press.

    Google Scholar 

  • Rodríguez-Serrano, M., Romero-Puertas, M. C., Pazmiño, D. M., Testillano, P. S., Risueño, M. C., Luis, A., & Sandalio, L. M. (2009). Cellular response of rea plants to Cd toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology, 150(1), 229–243.

    Google Scholar 

  • Sun, K. N., Wang, K. A., Yang, N., & Lv, X. H. (2016). The spatial distribution of main heavy metal elements in greenhouse soil under rotation mode. Shandong Agricultural Sciences, 48(11), 81–84.

    Google Scholar 

  • Sun, K. N., Wen, D., Yang, N., Wang, K. A., Li, X. H., & Yu, L. (2019). Heavy metal and soil nutrient accumulation and ecological risk assessment of vegetable fields in representative facilities in Shandong Province, China. Environmental Monitoring and Assessment, 191(4), 240.

    Google Scholar 

  • Tang, X. D., Li, Y. D., Liu, H. G., Dou, S., Wu, L., & Zhang, Z. D. (2012). Effect of sulfur application to soil enzyme activity of Vaccinium vitis-idaea L. Root Zone. Journal of South China Agricultural University, 33(2), 183–187.

    CAS  Google Scholar 

  • Wang, Z., Zhang, Y. X., Huang, Z. B., & Huang, L. (2008). Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant and Soil, 310, 137–149.

    CAS  Google Scholar 

  • Wang, Y. P., Li, Q. B., Hui, W., Shi, J. Y., Lin, Q., Chen, X. C., & Chen, Y. X. (2018). Effect of Sulphur on soil Cu/Zn availability and microbial community composition. Journal of Hazardous Materials, 159(2-3), 385–389.

    Google Scholar 

  • Wiszniewska, A., Hanus-Fajerska, E., Muszynska, E., & Ciarkowska, K. (2016). Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere, 26(1), 1–12.

    Google Scholar 

  • Wyszkowska, J., & Wyszkowski, M. (2010). Activity of soil dehydrogenases, urease, and acid and alkaline phosphatases in soil polluted with petroleum. Journal of Toxicology and Environmental Health-Part a, 73(17-18), 1202–1210.

    CAS  Google Scholar 

  • Wyszkowska, J., Tomkiel, M., Baćmaga, M., Borowik, A., & Kucharski, J. (2016). Response of microorganisms and enzymes to soil contamination with a mixture of pethoxamid terbuthylazine. Environmental Earth Sciences, 75(18), 1285.

    Google Scholar 

  • Xu, D. M., Liu, G. S., Xu, Z. J., Wang, L. M., & Liu, W. P. (2003). Effects and mechanism of simulated acid rain on the activities of soil acid phosphatase. China Environmental Science, 23(2), 176–179.

    CAS  Google Scholar 

  • Zhan, R. S., Chen, M. C., Yang, Z. P., & Yue, X. L. (2015). Effect of sulphur on availability of Cd and Pb in soil. Journal of Soil and Water Conservation, 29(3), 316–319.

    Google Scholar 

  • Zhang, C., Liu, G. B., Xue, S., & Song, Z. L. (2011). Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau, China. Geoderma, 161(3–4), 115–125.

    CAS  Google Scholar 

  • Zhao, F. J., Ma, Y. B., Zhu, Y. G., Tang, Z., & Mcgrath, S. P. (2015). Soil contamination in China: current status and mitigation strategies. Environmental Science & Technology, 49(2), 750–759.

    CAS  Google Scholar 

  • Zhou, J., Hao, M., Liu, Y. H., Huang, G. Y., Fu, Q. L., Zhu, J., & Hu, H. Q. (2018). Effects of exogenous sulfur on growth and Cd uptake in Chinese cabbage (Brassica campestris spp. pekinensis) in Cd-contaminated soil. Environmental Science and Pollution Research, 25(16), 15823–15829.

    CAS  Google Scholar 

Download references

Funding

This work was supported by Agriculture Industrial Technology System Funding of Shandong Province of China [Grant numbers: SDAIT-05-07]; Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences [Grant numbers: CXGC2016B06, CXGC2016A06]; Major Agricultural Application Innovation Project of Shandong Province [6682218040]; National Key R&D Program of China [Grant numbers: 2016YFD0200402-2]; China Agriculture Research System [Grant numbers: CARS-23-G14], and Jinan Top Ten Agricultural Characteristic Industry Science and Technology Innovation Team.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Chen or Kean Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Yue, Y., Wen, D. et al. Effects of exogenous sulfur on maize (Zea mays L.) growth and Cd accumulation in Cd-contaminated plastic shed soil. Environ Monit Assess 192, 651 (2020). https://doi.org/10.1007/s10661-020-08616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08616-4

Keywords

Navigation