Skip to main content

Advertisement

Log in

Spatio-temporal distribution of six pollutants and potential sources in the Hexi Corridor, Northwest China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Particulate matter (PM) concentrations are affected by anthropogenic emissions and sand transport jointly; however, the relative contributions from those two aspects are usually unknown. In our work, statistical analysis and back trajectories model were used to identify the dominant source in such area, by taking Yumen City as an example. We come to the conclusion that local emissions dominate the concentration of airborne pollutants, while sand transport plays a significant role on PM concentration. The conclusions were supported by the following results. (1) PM monthly mean concentrations at the two air quality stations, which are 70 km far away from each other, have the similar levels and variation trend; furthermore, a regression analysis of PM2.5 and PM10 daily concentrations between both stations indicated a significant correlation, suggesting that PM at both locations was influenced by the same emission sources; (2) statistical analysis results revealed that PM concentration has a positive correlation with wind speed, indicating the wind-blown dust and sand contribute mainly on PM concentration; (3) back-trajectory clustering analysis indicates that long-distance transport particulates from dust sources and their pathways had a significant impact on local PM concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling and Software, 20(10), 1263–1271.

    Google Scholar 

  • Alvim-Ferraz, M. C. M., Sousa, S. I. V., Pereira, M. C., & Martins, F. G. (2006). Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century. Environmental Pollution, 140, 516–524.

    CAS  Google Scholar 

  • Brankov, E., Trivikrama Raoa, S., & StevenPortera, P. (1998). A trajectory-clustering-correlation methodology for examining the long-range transport of pollutants. Atmospheric Environment, 32(9), 1525–1534.

    CAS  Google Scholar 

  • Choi, H., Zhang, Y. H., & Kim, K. H. (2008). Sudden high concentration of TSP affected by atmospheric boundary layer in Seoul metropolitan area during dust storm period. Environment International, 34, 635–647.

    CAS  Google Scholar 

  • Dawson, J. P., Adams, P. J., & Pandis, S. N. (2007). Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study. Atmospheric Environment, 41, 1494–1511.

    CAS  Google Scholar 

  • Dominick, D., Latif, H., Juahir, A., & Latif, A. Z. (2012a). An assessment of influence of meteorological factors on PM10 and NO2 at selected stations in Malaysia. Sustainable Environmental Research, 22(5), 305–315.

    CAS  Google Scholar 

  • Dominick, D., Juahir, H., Latif, M. T., Zain, S., & Aris, A. Z. (2012b). Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment, 60, 172–181.

    CAS  Google Scholar 

  • Filonchyk, M., Yan, H., & Li, X. (2018). Temporal and spatial variation of particulate matter and its correlation with other criteria of air pollutants in Lanzhou, China, in spring-summer periods. Atmospheric Pollution Research, 9, 1100–1110.

    CAS  Google Scholar 

  • Fleming, Z. L., Monks, P. S., & Manning, A. J. (2012). Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmospheric Research, 104-105, 1–39.

    CAS  Google Scholar 

  • Flocas, H., Kelessis, A., Helmis, C., Petrakakis, M., Zoumakis, M., & Pappas, K. (2009). Synoptic and local scale atmospheric circulation associated with air pollution episodes in an urban Mediterranean area. Theoretical and Applied Climatology, 95, 265–277. https://doi.org/10.1007/s00704-008-0005-9.

    Article  Google Scholar 

  • Ganor, E., Stupp, A., Osetinsky, I., & Alpert, P. (2010). Synoptic classification of lower troposphere profiles for dust days. Journal of Geophysical Research-Atmospheres, 115, D11201. https://doi.org/10.1029/2009JD012638.

    Article  Google Scholar 

  • Gao, J. J., Tian, H. Z., Cheng, K., Lu, L., Zheng, M., Wang, S. X., Hao, J. M., Wang, K., Hua, S. B., Zhu, C. Y., & Wang, Y. (2015). The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. Atmospheric Environment, 107, 1–8.

    CAS  Google Scholar 

  • Grundström, M., Hak, C., Chen, D., Hallquist, M., & Pleijel, H. (2015). Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air-relationships with wind speed, vertical temperature gradient and weather type. Atmospheric Environment, 120, 317–327.

    Google Scholar 

  • Guan, Q. Y., Cai, A., Wang, F. F., Yang, L. Q., Xu, C. Q., & Liu, Z. Y. (2017). Spatiotemporal variability of particulate matter in the key part of Gansu Province, western China. Environmental Pollution, 230, 189–198.

    CAS  Google Scholar 

  • Gupta, A. K., Karar, K., Ayoob, S., & John, K. (2008). Spatio-temporal characteristics of gaseous and particulate pollutants in an urban region of Kolkata, India. Atmospheric Research, 87, 103–115.

    CAS  Google Scholar 

  • He, J. J., Gong, S. L., Yu, Y., Yu, L. J., Wu, L., Mao, H. J., Song, C. B., Zhao, S. P., Liu, H. L., Li, X. Y., & Li, R. P. (2017). Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities. Environmental Pollution, 223, 484–496.

    CAS  Google Scholar 

  • Horel, J. D. (1981). A rotated principal component analysis of the interannual variability of the northern hemisphere 500 mb height field. Monthly Weather Review, 109, 2080–2092.

    Google Scholar 

  • Hu, J. L., Wang, Y. G., Ying, Q., & Zhang, H. L. (2014). Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmospheric Environment, 95, 598–609.

    CAS  Google Scholar 

  • Karagiannidis, A., Poupkou, A., Giannaros, T., Giannaros, C., Melas, D., & Argiriou, A. (2015). The air quality of a Mediterranean urban environment area and its relation to major meteorological parameters. Water, Air, and Soil Pollution, 226, 2239. https://doi.org/10.1007/s11270-014-2239-8.

    Article  CAS  Google Scholar 

  • Karar, K., Gupta, A. K., Kumar, A., & Biswas, A. K. (2006). Seasonal variations of PM10 and TSP in residential and industrial sites in an urban area of Kolkata, India. Environmental Monitoring and Assessment, 118, 369–381. https://doi.org/10.1007/s10661-006-1503-9.

    Article  CAS  Google Scholar 

  • Kassomenos, P. A. (2003). Anatomy of the synoptic conditions occurring over southern Greece during the second half of 20th century. Part I. Summer and winter. Theoretical and Applied Climatology, 75, 65–77.

    Google Scholar 

  • Khoder, M. I. (2009). Diurnal, seasonal and weekdays-weekends variations of ground level ozone concentrations in an urban area in Greater Cairo. Environmental Monitoring and Assessment, 149, 349–362.

    CAS  Google Scholar 

  • Li, L. L., Tan, Q. W., Zhang, Y. H., Feng, M., Qu, Y., An, J. L., & Liu, X. G. (2017a). Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China. Environmental Pollution, 230, 718–729.

    CAS  Google Scholar 

  • Li, X. L., Ma, Y. J., Wang, Y. F., Liu, N. W., & Hong, Y. (2017b). Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China. Atmospheric Research, 198, 185–193.

    CAS  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89.

    CAS  Google Scholar 

  • Liu, Z. R., Hu, B., Wang, L. L., Wu, F. K., Gao, W. K., & Wang, Y. S. (2015). Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: Analyses from a 9-year study. Environmental Science and Pollution Research, 22, 627–642. https://doi.org/10.1007/s11356-014-3347-0.

    Article  CAS  Google Scholar 

  • Liu, D. Y., Yan, W. L., Kang, Z. M., Liu, A. N., & Zhu, Y. (2018a). Boundary-layer features and regional transport process of an extreme haze pollution event in Nanjing, China. Atmospheric Pollution Research, 9, 1088–1099.

    Google Scholar 

  • Liu, L., Guo, J., Miao, Y., Liu, L., Li, J., Chen, D., He, J., & Cui, C. (2018b). Elucidating the relationship between aerosol concentration and summertime boundary layer structure in central China. Environmental Pollution, 241, 646–653.

    CAS  Google Scholar 

  • Ma, X. Y., & Jia, H. L. (2016). Particulate matter and gaseous pollutions in three megacities over China: Situation and implication. Atmospheric Environment, 140, 476–494.

    CAS  Google Scholar 

  • Pearce, J. L., Beringer, J., Nicholls, N., Hyndman, R. J., Uotila, P., & Tapper, N. J. (2011). Investigating the influence of synoptic-scale meteorology on air quality using self-organizing maps and generalized additive modelling. Atmospheric Environment, 45, 128–136.

    CAS  Google Scholar 

  • Pires, J. C. M., Sousa, S. I. V., Pereira, M. C., Alvim-Ferraz, M. C. M., & Martins, F. G. (2008). Management of air quality monitoring using principal component and cluster analysis—Part I: SO2 and PM10. Atmospheric Environment, 42, 1249–1260.

    CAS  Google Scholar 

  • Pudasainee, D., Sapkota, B., Shrestha, M. L., Kaga, A., Kondo, A., & Inoue, Y. (2006). Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal. Atmospheric Environment, 40, 8081–8087.

    CAS  Google Scholar 

  • Qiu, X. F., Zeng, Y., & Miao, Q. L. (2001). Sand-dust storms in China: Temporal-spatial distribution and tracks of source lands. Journal of Geographical Sciences, 11, 253–260. https://doi.org/10.1007/BF02892308.

    Article  Google Scholar 

  • Salvador, P., Artíñano, B., Pio, C., Afonso, J., Legrand, M., Puxbaum, H., & Hammer, S. (2010). Evaluation of aerosol sources at European high altitude background sites with trajectory statistical methods. Atmospheric Environment, 44, 2316–2329.

    CAS  Google Scholar 

  • Shi, C., Yuan, R. M., Wu, B. W., Meng, Y. J., Zhang, H., Zhang, H. J., & Gong, Z. Q. (2018a). Meteorological conditions conducive to PM2.5 pollution in winter 2016/ 2017 in the Western Yangtze River Delta, China. Science of the Total Environment, 642, 1221–1232.

    CAS  Google Scholar 

  • Shi, H. D., Andrea, C., Silvia, T., & Gao, Q. X. (2018b). The temporal and spatial distribution characteristics of air pollution index and meteorological elements in Beijing, Tianjin and Shijiazhuang, China. Integrated Environmental Assessment, 14, 710–721.

    CAS  Google Scholar 

  • Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M., & Pereira, M. C. (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling and Software, 22, 97–103.

    Google Scholar 

  • Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96, 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1.

    Article  Google Scholar 

  • Toh, Y. Y., Lim, S. F., & Von Glasow, R. (2013). The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia. Atmospheric Environment, 70, 435–446.

    CAS  Google Scholar 

  • Wang, H., & Shooter, D. (2004). Source apportionment of fine and coarse atmospheric particles in Auckland, New Zealand. Science of the Total Environment, 340, 189–198.

    Google Scholar 

  • Wang, S. G., Wang, J. Y., Zhou, Z. J., & Shang, K. Z. (2005). Regional characteristics of three kinds of dust storm events in China. Atmospheric Environment, 39, 509–520.

    CAS  Google Scholar 

  • Wang, S. J., Liu, X. P., Yang, X., Zou, B., & Wang, J. Y. (2018). Spatial variations of PM2.5 in Chinese cities for the joint impacts of human activities and natural conditions: A global and local regression perspective. Journal of Cleaner Production, 203, 143–152.

    Google Scholar 

  • Wang, L. L., Wang, H. W., Liu, J. K., Gao, Z. Q., Yang, Y. J., Zhang, X. Y., Meng, Y. B., & Huang, M. (2019). Impacts of the near-surface urban boundary layer structure on PM2.5 concentrations in Beijing during winter. Science of the Total Environment, 669, 493–504.

    CAS  Google Scholar 

  • Xie, Y. Y., Zhao, B., Zhang, L., & Luo, R. (2015). Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology., 20, 141–149.

    CAS  Google Scholar 

  • Zhang, H. L., Wang, Y. G., Hu, J. L., Ying, Q., & Hu, X. M. (2015a). Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental Research, 140, 242–254.

    CAS  Google Scholar 

  • Zhang, Z. Y., Zhang, X. L., Gong, D. Y., Quan, W. J., Zhao, X. J., Ma, Z. Q., & Kim, S. J. (2015b). Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmospheric Environment, 108, 67–75.

    CAS  Google Scholar 

  • Zhao, S. P., Yu, Y., Yin, D. Y., & He, J. J. (2015). Meteorological dependence of particle number concentrations in an urban area of complex terrain, northwestern China. Atmospheric Research, 164-165, 304–317.

    Google Scholar 

  • Zhao, S., Yu, Y., Yin, D., He, J., Liu, N., Qu, J., & Xiao, J. (2016). Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environment International, 86, 92–106.

    CAS  Google Scholar 

  • Zhao, S. P., Yu, Y., Yin, D. Y., Qin, D., He, J., Li, J., & Dong, L. (2018a). Two winter PM2.5 pollution types and the causes in the city clusters of Sichuan Basin, Western China. Science of the Total Environment, 636, 1228–1240.

    CAS  Google Scholar 

  • Zhao, S., Yu, Y., Yin, D., Qin, D., He, J., & Dong, L. (2018b). Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China. Science of the Total Environment, 624, 540–557.

    CAS  Google Scholar 

  • Zhou, W. D., Tie, X. X., Zhou, G. Q., & Liang, P. (2015). Possible effects of climate change of wind on aerosol variation during winter in Shanghai, China. Particuology, 20, 80–88.

    CAS  Google Scholar 

  • Zhou, X., Zhang, T. J., Li, Z. Q., Tao, Y., Wang, F. T., Zhang, X., Xu, C. H., Ma, S., & Huang, J. (2018). Particulate and gaseous pollutants in a petrochemical industrialized, valley city, Western China during 2013-2016. Environemental Science and Pollution Research, 25, 15174–15190. https://doi.org/10.1007/s11356-018-1670-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qin, C., Liu, Y. et al. Spatio-temporal distribution of six pollutants and potential sources in the Hexi Corridor, Northwest China. Environ Monit Assess 192, 624 (2020). https://doi.org/10.1007/s10661-020-08590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08590-x

Keywords

Navigation