Arthington, A. H., Arthington, S. E., Bunn, N. L., Poff, & Naiman, R. J. (2006). The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications, 16(4), 1311–1318.
Article
Google Scholar
Bao, C., & Fang, C. L. (2007). Water resources constraint force on urbanization in water deficient regions: a case study of the Hexiorridor, arid area of NW China. Ecological Economics, 62(3–4), 508–517.
Article
Google Scholar
Barber, C., Otto, C. J., & Bates, L. E. (1996). Evaluation of the relationship between landuse change and groundwater quality in a water supply catchment using GIS technology: the Gwelup wellfield Western Australia. Journal of Environmental Geology, 4(1), 6–19.
Google Scholar
Bierkens, M. F., & Wada, Y. (2019). Non-renewable groundwater use and groundwater depletion: a review. Environmental Research Letters, 14(6), 063002.
Article
Google Scholar
Briscoe, J. (2005). “India’s water economy: bracing for a turbulent future.” Report No. 34750-IN, viii–xi World Bank.
Cao, Y., & Roy, S. S. (2018). Spatial patterns of seasonal level trends of groundwater in India during 2002-2016. Weather, 75, 123–128. https://doi.org/10.1002/wea.3370.
Article
Google Scholar
CGWB. (2016). Aquifer mapping and groundwater management plan of NCT Delhi. New Delhi: Central Groundwater Board, State Unit Office.
Google Scholar
Christides, A., Mavrakis, A., Mitilineou, A. (2011). A case of intense seawater intrusion to aquifer of the Thriasio Plain, Greece. Proceedings of the 12th International Conference on Environmental Science and Technology (12th ICEST). Vol B: 152-159.
Datta, P. S., Deb, D. L., & Tyagi, S. K. (1997). Assessment of groundwater contamination from fertilizers in the Delhi area based on 180, N03− and K+ composition. Journal of Contaminant Hydrology, 27(3–4), 249–262.
Gleick, P. H., Burns, W. C. G., Chalecki, E. L., Cohen, M., Cushing, K. K., Mann, A., Reyes, R., Wolff, G. H., & Wong, A. K. (2002). The world’s water, 2002–2003. The biennial report on freshwater resources. Washington: Island Press.
Google Scholar
Gregory, J. H., Dukes, M. D., Jones, P. H., & Miller, G. L. (2006). Effect of urban soil compaction on infiltration rate. Journal of Soil and Water Conservation, 61(3), 117–124.
Google Scholar
Hamel, P., Daly, E., & Fletcher, T. D. (2013). Source-control stormwater management for mitigating the impacts of urbanisation on baseflow: a review. Journal of Hydrology, 485, 201–211.
Article
Google Scholar
Hay-Man Ng, H., Ge, L., Li, X., Abidin, H. Z., Andreas, H., & Zhang, K. (2012). Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. International Journal of Applied Earth Observation and Geoinformation, 18, 232–242.
Article
Google Scholar
Hermides, D., Kyriazis, D., Makri, P., & Ermidou, A. (2020). Geochemical evolution of the Thriassion Plain groundwaters, Attica, Greece. Environmental Monitoring and Assessment, 192, 561. https://doi.org/10.1007/s10661-020-08491-z.
CAS
Article
Google Scholar
Houria, B., Mahdi, K., & Zohra, T. F. (2020). Hydrochemical characterisation of groundwater quality: Merdja Plain (Tebessa Town, Algeria). Civil Engineering Journal, 6(2), 318–325.
Article
Google Scholar
Jacobson, C. R. (2011). Identification and quantification of the hydrological impacts of imperviousness in urban catchments: a review. Journal of Environmental Management, 92(6), 1438–1448.
Article
Google Scholar
Jain, M., Dawa, D., Mehta, R., Dimri, A. P., & Pandit, M. K. (2016). Monitoring land use change and its drivers in Delhi, India using multi-temporal satellite data. Modeling Earth Systems and Environment, 2(1), 19.
CAS
Article
Google Scholar
Kaiser, H. (2017). How India is serving the growing Delhi slum population. https://borgenproject.org/growing-delhi-slum-population/.
Karambela, A., 1997. Geomorphological and environmental study of Thriassion Plain PhD, Faculty of Geology and Geoenvironment, NKUA pp 289.
Kerr, R. A. (2009). Northern India’s groundwater is going, going, going…. Science, 325(5942), 798.
Article
Google Scholar
Khan, M. A., & Mahorana, P. C. (2002). Use of remote sensing and geographic information system in delineation and characterization of groundwater prospects zones. Indian Journal of Remote Sensing, 30, 131–141.
Article
Google Scholar
Kumar, S., & Bhandary, T. (2015). Comparative study of Landsat and Aster data by morphometric analysis. Civil Engineering Journal, 1(2), 21–25.
Article
Google Scholar
Kumar, R., Singh, R. D., & Sharma, K. D. (2005). Water resources of India. Current Science, 89, 794–811.
Google Scholar
Lloyd, J. W., & Heathcote, J. A. (1985). Natural inorganic hydrochemistry in relation to groundwater (p. 296). Oxford: Clarendon press.
Google Scholar
Makri, P. (2008). Investigating the pollution from BTEX in the groundwater of Thriassion Plain, Ph.D. University of Athens, pp260.
Malik, N., Bookhagen, B., & Mucha, P. J. (2016). Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes. Geophysical Research Letters, 43(4), 1710–1717.
Article
Google Scholar
Malik, K., Kumar, D., & Perissin, D. (2019). Assessment of subsidence in Delhi NCR due to groundwater depletion using TerraSAR-X and persistent scatterers interferometry. The Imaging Science Journal, 67(1), 1–7.
Article
Google Scholar
Mall, R. K., Gupta, A., Singh, R., Singh, R. S., & Rathore, L. S. (2006). Water resources and climate change: an Indian perspective. Current Science, 90, 1610–1626.
Google Scholar
Mallick, J., Singh, C. K., Al-Wadi, H., Ahmed, M., Rahman, A., Shashtri, S., & Mukherjee, S. (2015). Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrological Processes, 29(3), 395–418.
Article
Google Scholar
Mapani, B. S. (2005). Groundwater and urbanization, risk and mitigation: the case for the city of Windhoek, Namibia. Physics and Chemistry of the Earth, 30, 706–711.
Article
Google Scholar
McDonald, R. I., Green, P., Balk, D., Fekete, B. M., Revengaa, C., Todd, M., & Montgomery, M. (2011). Urban growth, climate change, and freshwater availability. Proceedings of the National Academy of Sciences, 108(15), 6312–6317.
CAS
Article
Google Scholar
Meyer, S. (2005). Analysis of base flow trends in urban streams, northeastern Illinois, USA. Hydrogeology Journal, 13(5), 871–885.
Article
Google Scholar
Mueller, G. D., & Thompson, A. M. (2009). The ability of urban residential lawns to disconnect impervious area from municipal sewer systems1. Journal of the American Water Resources Association, 45(5), 1116–1126.
Article
Google Scholar
National Geophysical Research Institute, NGRI (2019). Delhi at epicentre of global groundwater crisis. http://timesofindia.indiatimes.com/articleshow/68131980.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst.
NRSA. (1995). Report on area statistics of land use/land cover generated using remote sensing techniques, India (pp. 9–23). Balanagar, Hyderabad: Project Report, National Remote Sensing Agency.
Google Scholar
Ortega-Guerrero, A., Rudolph, D. L., & Cherry, J. A. (1999). Analysis of long-term land subsidence near Mexico City: Field investigations and predictive modeling. Water Resources Research, 35, 3327–3341.
Article
Google Scholar
Rai, S. C., & Kumari, P. (2012). Assessment of groundwater contamination from land use/cover change in rural-urban fringe of National Capital Territory of Delhi (India). Analele Stiintifice ale Universitatii “Alexandru Ioan Cuza” din Iasi-seria Geografie, 58(1), 31–46.
Google Scholar
Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature., 460(7258), 999–1002.
CAS
Article
Google Scholar
Rouabhia, A., Baali, F., & Fehdi, C. (2009). Impact of agricultural activity and lithology on groundwater quality in the Merdja Area, Tebessa, Algeria. Arabian Journal of Geosciences, 3(3), 307–318. https://doi.org/10.1007/s12517-009-0087-4.
CAS
Article
Google Scholar
Roy, A. H., Dybas, A. L., Fritz, K. M., & Lubbers, H. R. (2009). Urbanization affects the extent and hydrologic permanence of headwater streams in a midwestern US metropolitan area. Journal of the North American Benthological Society, 28(4), 911–928.
Article
Google Scholar
Sen Roy, S., & Singh, R. B. (2015). Role of local level relative humidity on the development of urban heat island across the Delhi Metropolitan Region. In R. B. Singh (Ed.), Urban Development Challenges, Risks and Resilience in Asian Mega Cities (pp. 99–118). Tokyo: Springer.
Google Scholar
Shiklomanov, I. A., and J. C. Rodda (Eds.). (2003). World water resources at the beginning of the 21st century. International hydrology series: 435. Cambridge University Press Cambridge.
Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. R. (2005). Impacts of impervious surface on watershed hydrology: a review. Urban Water Journal, 2(4), 263–275.
Article
Google Scholar
Srinivasan, V., Seto, K. C., Emerson, R., & Gorelick, S. M. (2013). The impact of urbanization on water vulnerability: a coupled human–environment system approach for Chennai, India. Global Environmental Change, 23(1), 229–239.
Article
Google Scholar
Sudhira, H. S., Ramachandra, T. V., & Jagadish, K. S. (2004). Urban sprawl: metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformatics., 5, 29–39.
Article
Google Scholar
The Times of India. 2018. Groundwater in parts of Delhi has arsenic, fluorides: Report. http://timesofindia.indiatimes.com/articleshow/64514905.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst.
Wentz, E. A., Nelson, D., Rahman, A., Stefanov, W. L., & Sen Roy, S. (2008). Expert system classification of urban land use/cover for Delhi, India. International Journal of Remote Sensing, 29, 4405–4427. https://doi.org/10.1080/01431160801905497.r.
Article
Google Scholar
WHO. (2017). Guidelines for Drinking Water. Fourth Edition. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950-eng.pdf;jsessionid=70446CDF436D0AC97FB0AC0EC9E0DDB7?sequence=1.