Probabilistic carcinogenic and non-carcinogenic risk assessment of heavy metal ingestion through consumption of different walnut cultivars: An Iranian study

Abstract

The heavy metal levels in six walnut cultivars from five geographical zones of Iran were measured. An assessment of risks was conducted by calculating the Target Hazard Quotient (THQ) and Incremental Lifetime Cancer Risk (ILCR) by use of the Monte Carlo simulation method. The highest amounts of As and Pb were reported in Farouj samples. Also, the highest levels of Cr, Zn, Cu and Mn were determined in samples collected from Tuyserkan. Accordingly, 50th and 95th ILCRs for general population due to consumption of walnut were 1.03 × 10−4 and 3.11 × 10−4 (for As), 4.10 × 10−6 and 1.1 × 10−5 (for Cr) and 4.71 × 10−9 and 1.05 × 10−8 (for Pb), respectively. In addition, the 50th and 95th centiles of the HIs for walnut ingestion by Iranians were 1.02 and 2.05, respectively, indicating a minor chance of non-cancer effects. Based on the calculated 95% ILCR, dietary exposure to As through the consumption of walnut poses a risk to Iranian consumer health. However, ILCR values of other heavy metals (HMs) were in acceptable ranges (ILCR < 1 × 10−4), representing no toxicological concern for consumers. The most significantly influential parameters were determined by sensitivity analysis during the MCS. According to THQ and ILCR methods, concentration was the most sensitive parameters. For THQ method the concentration effects were ranged from 72.4 to 85.1%. Moreover, for ILCR method the effects of concentration in As, Cr, and Pb were 87.1, 79.1 and 83.54%, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amirabadi, F., Tabrizian, K., Rashki, A., Rezaee, R., Tsatsakis, A. M., Arsene, A. L., et al. (2016). Lead levels in children deciduous teeth are associated with parents’ education status and daily dairy consumption: an Iranian experience. Farmacia, 64(2), 202–209.

    CAS  Google Scholar 

  2. Antoniadis, V., Shaheen, S. M., Levizou, E., Shahid, M., Niazi, N. K., Vithanage, M., Ok, Y. S., Bolan, N., & Rinklebe, J. (2019). A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: are they protective concerning health risk assessment?-A review. Environment International, 127, 819–847.

    CAS  Article  Google Scholar 

  3. Aryapak, S., & Ziarati, P. (2014). Nutritive value of Persian walnut (Juglans regia L.) orchards. American-Eurasian Journal of Agricultural & Environmental Sciences, 14, 1228–1235.

    Google Scholar 

  4. Aven, T. (2016). Risk assessment and risk management: review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1–13.

    Article  Google Scholar 

  5. COSMULESCU, Sina Niculina, Baciu, Adrian, Achim, Gheorghe, Mihai, BOTU, & Trandafir, Ion. (2009). Mineral composition of fruits in different walnut (Juglans regia L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 156-160.

  6. Badibostan, H., Feizy, J., Daraei, B., Shoeibi, S., Rajabnejad, S. H., Asili, J., et al. (2019). Polycyclic aromatic hydrocarbons in infant formulae, follow-on formulae, and baby foods in Iran: An assessment of risk. Food and Chemical Toxicology, 110640.

  7. Banger, K., Wagner-Riddle, C., Grant, B. B., Smith, W. N., Drury, C., & Yang, J. (2020). Modifying fertilizer rate and application method reduces environmental nitrogen losses and increases corn yield in Ontario. Science of the Total Environment, 137851.

  8. Blom, W. M., Remington, B. C., Baumert, J. L., Bucchini, L., Crépet, A., Crevel, R. W. R., Madsen, C. B., Taylor, S. L., Houben, G. F., & Kruizinga, A. G. (2019). Sensitivity analysis to derive a food consumption point estimate for deterministic food allergy risk assessment. Food and Chemical Toxicology, 125, 413–421.

    CAS  Article  Google Scholar 

  9. Bopp, S. K., Barouki, R., Brack, W., Costa, D., Silvia, D., Jean-Lou, C. M., Drakvik, P. E., et al. (2018). Current EU research activities on combined exposure to multiple chemicals. Environment International, 120, 544–562.

    CAS  Article  Google Scholar 

  10. Bulka, C. M., Bryan, M. S., Persky, V. W., Daviglus, M. L., Durazo-Arvizu, R. A., Parvez, F., et al. (2019). Changes in blood pressure associated with lead, manganese, and selenium in a Bangladeshi cohort. Environmental Pollution, 248, 28–35.

    CAS  Article  Google Scholar 

  11. Cabrera, C., Lloris, F., Gimenez, R., Olalla, M., & Lopez, M. C. (2003). Mineral content in legumes and nuts: contribution to the Spanish dietary intake. Science of the Total Environment, 308(1-3), 1–14.

    CAS  Article  Google Scholar 

  12. Carter, C. J., & Blizard, R. A. (2016). Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochemistry International, 101, 83–109.

    CAS  Article  Google Scholar 

  13. Chen, S.-C., & Liao, C.-M. (2006). Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of the Total Environment, 366(1), 112–123.

    CAS  Article  Google Scholar 

  14. Cole, J. C., Smith, M. W., Penn, C. J., Cheary, B. S., & Conaghan, K. J. (2016). Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Scientia Horticulturae, 211, 420–430.

    CAS  Article  Google Scholar 

  15. Dogan, Y., Unver, M. C., Ugulu, I., Calis, M., & Durkan, N. (2014). Heavy metal accumulation in the bark and leaves of Juglans regia planted in Artvin City, Turkey. Biotechnology & Biotechnological Equipment, 28(4), 643–649.

    Article  CAS  Google Scholar 

  16. EFSA. (2008). Opinion of the Scientific Panel on Plant Protection products and their Residues to evaluate the suitability of existing methodologies and, if appropriate, the identification of new approaches to assess cumulative and synergistic risks from pesticides to human health with a view to set MRLs for those pesticides in the frame of Regulation (EC) 396/2005. EFSA Journal, 6(705).

  17. EFSA. (2019). Microstrategy/openfoodtox.

  18. Epa, US. (2009). Risk assessment guidance for superfund volume I: human health evaluation manual (Part F, Supplemental guidance for inhalation risk assessment). Washington DC.

  19. Fakhri, Yadolah, Mousavi Khaneghah, Amin, Hadiani, Mohammad Rasoul, Keramati, Hassan, Hosseini Pouya, Rokhsane, Moradi, Bigard, & da Silva, Beatriz Severino. (2017). Non-carcinogenic risk assessment induced by heavy metals content of the bottled water in Iran. Toxin Reviews, 36(4), 313-321.

  20. Fakhri, Y., Saha, N., Ghanbari, S., Rasouli, M., Miri, A., Avazpour, M., et al. (2018). Carcinogenic and non-carcinogenic health risks of metal (oid) s in tap water from Ilam city, Iran. Food and Chemical Toxicology, 118, 204–211.

    CAS  Article  Google Scholar 

  21. Fang, B., & Zhu, X. (2014). High content of five heavy metals in four fruits: evidence from a case study of Pujiang County, Zhejiang Province, China. Food Control, 39, 62–67.

    Article  Google Scholar 

  22. FAO. (2020). Crop statistics are recorded for 173 products. Food and Agriculture Organization.

  23. Fathabad, A. E., Shariatifar, N., Moazzen, M., Nazmara, S., Fakhri, Y., Alimohammadi, M., et al. (2018). Determination of heavy metal content of processed fruit products from Tehran's market using ICP-OES: a risk assessment study. Food and Chemical Toxicology, 115, 436–446.

    CAS  Article  Google Scholar 

  24. Fiore, M., Barone, R., Copat, C., Grasso, A., Cristaldi, A., Rizzo, R., & Ferrante, M. (2020). Metal and essential element levels in hair and association with autism severity. Journal of Trace Elements in Medicine and Biology, 57, 126409.

    CAS  Article  Google Scholar 

  25. Gandev, S. (2007). Budding and grafting of the walnut (Juglans regia L.) and their effectiveness in Bulgaria. Bulgarian Journal of Agricultural Science, 13(6), 683.

    Google Scholar 

  26. Gharibzahedi, S. M., Taghi, M., Mohammad, S., Hamedi, M., & Khodaiyan, F. (2012). Comparative analysis of new Persian walnut cultivars: nut/kernel geometrical, gravimetrical, frictional and mechanical attributes and kernel chemical composition. Scientia Horticulturae, 135, 202–209.

    CAS  Article  Google Scholar 

  27. Ghasemidehkordi, B., Malekirad, A. A., Nazem, H., Fazilati, M., Salavati, H., Shariatifar, N., et al. (2018). Concentration of lead and mercury in collected vegetables and herbs from Markazi province, Iran: a non-carcinogenic risk assessment. Food and Chemical Toxicology, 113, 204–210.

    CAS  Article  Google Scholar 

  28. Gu, Q., Yu, T., Yang, Z., Ji, J., Hou, Q., Wang, L., Wei, X., & Zhang, Q. (2019). Prediction and risk assessment of five heavy metals in maize and peanut: a case study of Guangxi, China. Environmental Toxicology and Pharmacology, 70, 103199.

    CAS  Article  Google Scholar 

  29. Hajar, E. W. I., Sulaiman, A. Z. B., & Sakinah, A. M. M. (2014). Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia rebaudiana plant. Procedia Environmental Sciences, 20, 386–393.

    CAS  Article  Google Scholar 

  30. Han, Y., Ni, Z., Li, S., Qu, M., Tang, F., Mo, R., Ye, C., & Liu, Y. (2018). Distribution, relationship, and risk assessment of toxic heavy metals in walnuts and growth soil. Environmental Science and Pollution Research, 25(18), 17434–17443.

    CAS  Article  Google Scholar 

  31. Hernández, A. F., & Tsatsakis, A. M. (2017). Human exposure to chemical mixtures: Challenges for the integration of toxicology with epidemiology data in risk assessment. Food and Chemical Toxicology, 103, 188–193. https://doi.org/10.1016/j.fct.2017.03.012.

    CAS  Article  Google Scholar 

  32. Huang, Z., Pan, X.-D., Wu, P.-G., Han, J.-L., & Chen, Q. (2014). Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control, 36(1), 248–252.

    CAS  Article  Google Scholar 

  33. IARC. (2017). Agents Classified by the IARC Monographs, Volumes 1–123.

  34. Ikhsan, A. S., Topçu, H., Sütyemez, M., & Kafkas, S. (2016). Novel 307 polymorphic SSR markers from BAC-end sequences in walnut (Juglans regia L.): effects of motif types and repeat lengths on polymorphism and genetic diversity. Scientia Horticulturae, 213, 1–4.

    CAS  Article  Google Scholar 

  35. JECFA. (2019). Database contains the summaries of all the evaluations of flavours, food additives, contaminants, toxicants and veterinary drugs JECFA.

  36. Kalkışım, Özgün, Ozdes, Duygu, & Onaran, Abdurrahman. (2014). Assessment of mineral elements and heavy metal contents of walnut samples (juglans regia L.).

  37. Kruizinga, A. G., Briggs, D., Crevel, R. W., Knulst, A. C., van den Bosch, L. M., & Houben, G. F. (2008). Probabilistic risk assessment model for allergens in food: sensitivity analysis of the minimum eliciting dose and food consumption. Food and Chemical Toxicology, 46(5), 1437–1443. https://doi.org/10.1016/j.fct.2007.09.109.

    CAS  Article  Google Scholar 

  38. Lemly, A. D. (1996). Evaluation of the hazard quotient method for risk assessment of selenium. Ecotoxicology and Environmental Safety, 35(2), 156–162.

    CAS  Article  Google Scholar 

  39. Li, Z., Nie, J., Lu, Z., Xie, H., Kang, L., Chen, Q., et al. (2016). Cumulative risk assessment of the exposure to pyrethroids through fruits consumption in China–Based on a 3-year investigation. Food and Chemical Toxicology, 96, 234–243.

    Article  CAS  Google Scholar 

  40. Makedonski, L., Peycheva, K., & Stancheva, M. (2017). Determination of heavy metals in selected black sea fish species. Food Control, 72, 313–318.

    CAS  Article  Google Scholar 

  41. Momchilova, S., Arpadjan, S., & Blagoeva, E. (2016). Accumulation of microelements Cd, Cu, Fe, Mn, Pb, Zn in walnuts (Juglans regia L.) depending on the cultivar and the harvesting year. Bulgarian Chemical Communications, 48(1), 50–54.

    Google Scholar 

  42. Neris, J. B., Olivares, D. M. M., Velasco, F. G., Luzardo, F. H. M., Correia, L. O., & González, L. N. (2019). HHRISK: a code for assessment of human health risk due to environmental chemical pollution. Ecotoxicology and Environmental Safety, 170, 538–547.

    CAS  Article  Google Scholar 

  43. Ni, Z., Tang, F., Yu, Q., & Liu, Y. (2016). Toxic and essential elements in five tree nuts from Hangzhou market, China. Food Additives & Contaminants: Part B, 9(4), 246–250.

    CAS  Article  Google Scholar 

  44. Ogunkunle, C. O., Fatoba, P. O., Ogunkunle, M. O., & Oyedeji, A. A. (2013). Potential health risk assessment for soil heavy metal contamination of Sagamu, South-west Nigeria due to cement production. International Journal of Applied Science and Technology, 3(2).

  45. Organization, World Health, & Chemicals, Inter-Organization Programme for the Sound Management of. (2004). IPCS risk assessment terminology (Vol. 1): World Health Organization.

  46. Ozyigit, I. I., Uras, M. E., Yalcin, I. E., Severoglu, Z., Demir, G., Borkoev, B., Salieva, K., Yucel, S., Erturk, U., & Solak, A. O. (2019). Heavy Metal Levels and Mineral Nutrient Status of Natural Walnut (Juglans regia L.) Populations in Kyrgyzstan: nutritional values of kernels. Biological Trace Element Research, 189(1), 277–290.

    CAS  Article  Google Scholar 

  47. Qian, Y., Chen, C., Zhang, Q., Li, Y., Chen, Z., & Li, M. (2010). Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk. Food Control, 21(12), 1757–1763.

    CAS  Article  Google Scholar 

  48. Rabadán, A., Pardo, J. E., Pardo-Giménez, A., & Álvarez-Ortí, M. (2018). Effect of genotype and crop year on the nutritional value of walnut virgin oil and defatted flour. Science of the Total Environment, 634, 1092–1099.

    Article  CAS  Google Scholar 

  49. Rotter, S., Beronius, A., Boobis, A. R., Hanberg, A., Van Klaveren, J., Luijten, M., et al. (2018). Overview on legislation and scientific approaches for risk assessment of combined exposure to multiple chemicals: the potential EuroMix contribution. Critical Reviews in Toxicology, 48(9), 796–814.

    CAS  Article  Google Scholar 

  50. Sadeghi, L., Tanwir, F., & Babadi, V. Y. (2018). Physiological and biochemical effects of Echium Amoenum extract on Mn2+-imposed Parkinson like disorder in rats. Advanced Pharmaceutical Bulletin, 8(4), 705–713.

    CAS  Article  Google Scholar 

  51. Saghazadeh, A., & Rezaei, N. (2017). Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 79, 340–368.

    CAS  Article  Google Scholar 

  52. Sarigiannis, D. A., & Hansen, U. (2012). Considering the cumulative risk of mixtures of chemicals—a challenge for policy makers. Environmental Health, 11(1), S18.

    Article  Google Scholar 

  53. Sultana, M. S., Rana, S., Yamazaki, S., Aono, T., & Yoshida, S. (2017). Health risk assessment for carcinogenic and non-carcinogenic heavy metal exposures from vegetables and fruits of Bangladesh. Cogent Environmental Science, 3(1), 1291107.

    Article  CAS  Google Scholar 

  54. Taghizadeh, S. F., Davarynejad, G., Asili, J., Nemati, S. H., Rezaee, R., Goumenou, M., Tsatsakis, A. M., & Karimi, G. (2017). Health risk assessment of heavy metals via dietary intake of five pistachio (Pistacia vera L.) cultivars collected from different geographical sites of Iran. Food and Chemical Toxicology, 107, 99–107.

    CAS  Article  Google Scholar 

  55. Taghizadeh, S. F., Rezaee, R., Davarynejad, G., Asili, J., Nemati, S. H., Goumenou, M., Tsakiris, I., Tsatsakis, A. M., Shirani, K., & Karimi, G. (2018). Risk assessment of exposure to aflatoxin B1 and ochratoxin A through consumption of different Pistachio (Pistacia vera L.) cultivars collected from four geographical regions of Iran. Environmental Toxicology and Pharmacology, 61, 61–66.

    CAS  Article  Google Scholar 

  56. Taghizadeh, S. F., Badibostan, H., Hayes, A. W., Giesy, J. P., & Karimi, G. (2019a). Residues levels of pesticides in walnuts of Iran and associated health risks. Human and Ecological Risk Assessment: An International Journal, 37, 1–14.

    Article  CAS  Google Scholar 

  57. Taghizadeh, S. F., Goumenou, M., Rezaee, R., Alegakis, T., Kokaraki, V., Anesti, O., Sarigiannis, D. A., Tsatsakis, A., & Karimi, G. (2019b). Cumulative risk assessment of pesticide residues in different Iranian pistachio cultivars: applying the source specific HQS and adversity specific HIA approaches in Real Life Risk Simulations (RLRS). Toxicology Letters, 313, 91–100.

    CAS  Article  Google Scholar 

  58. Taghizadeh, Seyedeh Faezeh, Rezaee, Ramin, Badiebostan, Hasan, Giesy, John P, & Karimi, Gholamreza. (2019c). Occurrence of mycotoxins in rice consumed by Iranians: a probabilistic assessment of risk to health. Food Additives & Contaminants: Part A, 37: 1-13.

  59. Taghizadeh, Seyedeh Faezeh, Rezaee, Ramin, Badibostan, Hasan, & Karimi, Gholamreza. (2020). Aflatoxin B1 in walnuts: a probabilistic cancer risk assessment for Iranians. Toxicological & Environmental Chemistry (in press), 1-16.

  60. Taha, N. A., & Al-wadaan, M. A. (2011). Utility and importance of walnut, Juglans regia Linn: a review. African Journal of Microbiology Research, 5(32), 5796–5805.

    Google Scholar 

  61. Tapia, M. I., Sánchez-Morgado, J. R., García-Parra, J., Ramírez, R., Hernández, T., & González-Gómez, D. (2013). Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. Journal of Food Composition and Analysis, 31(2), 232–237.

    CAS  Article  Google Scholar 

  62. Topcu, H., Ikhsan, A. S., Sütyemez, M., Coban, N., Güney, M., & Kafkas, S. (2015). Development of 185 polymorphic simple sequence repeat (SSR) markers from walnut (Juglans regia L.). Scientia Horticulturae, 194, 160–167.

    CAS  Article  Google Scholar 

  63. Trandafir, I., Cosmulescu, S., Botu, M., & Nour, V. (2016). Antioxidant activity, and phenolic and mineral contents of the walnut kernel (Juglans regia L.) as a function of the pellicle color. Fruits, 71(3), 177–184.

    Article  Google Scholar 

  64. Tsakiris, I. N., Goumenou, M., Tzatzarakis, M. N., Alegakis, A. K., Tsitsimpikou, C., Ozcagli, E., Vynias, D., & Tsatsakis, A. M. (2015). Risk assessment for children exposed to DDT residues in various milk types from the Greek market. Food and Chemical Toxicology, 75, 156–165.

    CAS  Article  Google Scholar 

  65. Türkmen, M., & Budur, D. (2018). Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chemistry, 254, 256–259.

    Article  CAS  Google Scholar 

  66. USEPA. (2002). Chromium(III), insoluble salts; CASRN 16065-83-1.

  67. Venter, C., Oberholzer, H. M., Taute, H., Cummings, F. R., & Bester, M. J. (2015). An in ovo investigation into the hepatotoxicity of cadmium and chromium evaluated with light-and transmission electron microscopy and electron energy-loss spectroscopy. Journal of Environmental Science and Health, Part A, 50(8), 830–838.

    CAS  Article  Google Scholar 

  68. Vračko, P., Tuomisto, J., Grad, J., & Kunsele, E. (2007). Exposure of children to chemical hazards in food. Geneva: World Health Organization.

    Google Scholar 

  69. Wu, F., Harper, B. J., & Harper, S. L. (2019a). Comparative dissolution, uptake, and toxicity of zinc oxide particles in individual aquatic species and mixed populations. Environmental Toxicology and Chemistry, 38(3), 591–602.

    CAS  Article  Google Scholar 

  70. Wu, S., Zheng, Y., Li, X., Han, Y., Qu, M., Ni, Z., Tang, F., & Liu, Y. (2019b). Risk assessment and prediction for toxic heavy metals in chestnut and growth soil from China. Journal of the Science of Food and Agriculture, 99(8), 4114–4122.

    CAS  Article  Google Scholar 

  71. Xie, J., Marano, K. M., Wilson, C. L., Liu, H., Gan, H., Xie, F., & Naufal, Z. S. (2012). A probabilistic risk assessment approach used to prioritize chemical constituents in mainstream smoke of cigarettes sold in China. Regulatory Toxicology and Pharmacology, 62(2), 355–362.

    CAS  Article  Google Scholar 

  72. Yousefi, M., Shemshadi, G., Khorshidian, N., Ghasemzadeh-Mohammadi, V., Fakhri, Y., Hosseini, H., & Khaneghah, A. M. (2018). Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: A risk assessment study. Food and Chemical Toxicology, 118, 480–489.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to NIMAD and Mashhad University of Medical Sciences, Iran.

Funding

This research was supported by National Institute of Medical Research Development (NIMAD No. 983264).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Karimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taghizadeh, S.F., Rezaee, R., Badibostan, H. et al. Probabilistic carcinogenic and non-carcinogenic risk assessment of heavy metal ingestion through consumption of different walnut cultivars: An Iranian study. Environ Monit Assess 192, 599 (2020). https://doi.org/10.1007/s10661-020-08551-4

Download citation

Keywords

  • Carcinogenicity
  • Food toxicity
  • Heavy metals
  • Non-carcinogenicity
  • Risk assessment
  • Walnut