Seasonal changes in primary production and respiration in a subtropical lake undergoing eutrophication

Abstract

The balance between gross primary production (GPP) and respiration (R) is frequently used to estimate the role of lakes in the carbon cycle. Seasonal changes in the carbon cycle of subtropical lakes are often underestimated, but changes in meteorological and limnological characteristics often follow the well-defined climatic seasons. Based on 1 year’s free-water dissolved oxygen and temperature measurements, we investigated the seasonal changes in primary production and respiration in subtropical Peri Lake in Southern Brazil, which is currently undergoing eutrophication. We expected that periods of high light availability and temperature would lead to a net autotrophic condition. Furthermore, we explored the seasonal coupling between GPP and R, expecting that different sources of organic matter would have different effects on the metabolic rates. We found that Peri Lake was predominately net heterotrophic (GPP  < R). GPP was high during summer and autumn and low in winter, as was R, coinciding with the seasonal changes occurring in light and temperature. Light conditions were of essential importance for the variations in GPP, while respiration was fueled by both autochthonous and allochthonous organic matter. Constant external input of organic matter resulted in a generally low coupling between GPP and R. A tighter coupling between GPP and R was observed in spring as a result of higher productivity, while a decoupling in autumn was due to intensified allochthonous organic matter runoff caused by rainfall and wind. We found that higher productivity rates in summer did not shift the system to an autotrophic condition and that Peri Lake functioned as a carbon source, light and organic matter being the prime drivers for the metabolic rates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ávila, M. P., Brandão, L. P. M., Brighenti, L. S., Tonetta, D., Reis, M. P., Stæhr, P. A., Asmala, E., Amado, A. M., Barbosa, F. A. R., Bezerra-Neto, J. F., & Nascimento, A. M. A. (2019). Linking shifts in bacterial community with changes in dissolved organic matter pool in a tropical lake. Science of The Total Environment, 672, 990–1003.

    Article  CAS  Google Scholar 

  2. Biddanda, B. A., & Cotner, J. B. (2002). Love handles in aquatic ecosystems: the role of dissolved organic carbon drawdown, resuspended sediments, and terrigenous inputs in the carbon balance of Lake Michigan. Ecosystems, 5, 431–445.

    CAS  Article  Google Scholar 

  3. Brighenti, L. S., Staehr, P. A., Gagliardi, L. M., Brandão, L. P. M., Elias, E. C., Mello, N. A. S. T., Barbosa, F. A. R., & Bezerra-Neto, J. F. (2015). Seasonal changes in metabolic rates of two tropical lakes in the Atlantic Forest of Brazil. Ecosystems, 18, 589–604.

    CAS  Article  Google Scholar 

  4. Carvalho, L., Jones, C., & Liebmann, B. (2004). The South Atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate, 17, 88–108.

    Article  Google Scholar 

  5. Cole, J. J., Pace, M. L., Carpenter, S. R., & Kitchell, J. F. (2000). Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography, 45, 1718–1730.

    Article  Google Scholar 

  6. Cole, J. J., Carpenter, S. R., Kitchell, J. F., & Pace, M. L. (2002). Pathways of organic carbon utilization in small lakes: Results from a whole-lake 13C addition and coupled model. Limnology and Oceanography, 47, 1664–1675.

    CAS  Article  Google Scholar 

  7. Farjalla, V. F., Marinho, C. C., Faria, B. M., Amado, A. M., Esteves, F. A., Bozelli, R. L., & Giroldo, D. (2009). Synergy of fresh and accumulated organic matter to bacterial growth. Microbial Ecology, 57, 657–666.

    CAS  Article  Google Scholar 

  8. Fontes, M. L. S., Tonetta, D., Dalpaz, L., Antônio, R. V., & Petrucio, M. M. (2013). Dynamics of planktonic prokaryotes and dissolved carbon in a subtropical coastal lake. Frontiers in Microbiology, 4, 71.

    CAS  Article  Google Scholar 

  9. Gagliardi, L. M., Brighenti, L. S., Staehr, P. A., Barbosa, F. A. R., & Bezerra-Neto, J. F. (2019). Reduced rainfall increases metabolic rates in upper mixed layers of tropical lakes. Ecosystems, 22, 1406–1423.

    Article  Google Scholar 

  10. Golterman, H. L., Clymo, R. S., & Ohnstad, M. A. M. (1978). Methods for physical and chemical analysis of freshwater. Oxford: Blackwell Scientific.

    Google Scholar 

  11. Hanson, P. C., Bade, D. L., & Carpenter, S. R. (2003). Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnology and Oceanography, 48, 1112–1119.

    CAS  Article  Google Scholar 

  12. Hanson, P. C., Carpenter, S. R., Kimura, N., Wu, C., Cornelius, S. P., & Kratz, T. K. (2008). Evaluation of metabolism models for free-water dissolved oxygen methods in lakes. Limnology and Oceanography: Methods, 6, 454–465.

    CAS  Google Scholar 

  13. Hecky, R. E., & Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33, 196–822.

    Google Scholar 

  14. Hennemann, M. C., Simonassi, J. C., & Petrucio, M. M. (2015). Paleolimnological record as an indication of incipient eutrophication in an oligotrophic subtropical coastal lake in Southern Brazil. Environmental Monitoring and Assessment, 187, 513.

    Article  CAS  Google Scholar 

  15. Hennemann, M. C., & Petrucio, M. M. (2016). High chlorophyll a concentration in a low nutrient context: discussions in a subtropical lake dominated by cyanobacteria. Journal of Limnology, 75, 530–530.

    Google Scholar 

  16. Honti, M., Istvánovics, V., Staehr, P. A., Brighenti, L. S., Zhu, M., & Zhu, G. (2016). Robust estimation of lake metabolism by coupling high frequency dissolved oxygen and chlorophyll fluorescence data in a Bayesian framework. Inland Waters, 6, 608–621.

    CAS  Article  Google Scholar 

  17. Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50, 346–363.

    Article  Google Scholar 

  18. Jennings, E., Jones, S., Arvola, L., Staehr, P. A., Gaiser, E., Jones, I. D., Weathers, K. C., Weyhenmeyer, G. A., Chiu, C. Y., & Eyto, E. (2012). Effects of weather-related episodic events in lakes: an analysis based on high-frequency data. Freshwater Biology, 57, 589–601.

    CAS  Article  Google Scholar 

  19. Jørgensen, S. E. (1979). Handbook of environmental data and ecological parameters. Copenhagen: National Society for Ecological Modelling.

    Google Scholar 

  20. Jähne, B., Münnich, O., Bösinger, R., Dutzi, A., Huber, W., & Libner, P. (1987). On the parameters influencing air-water gas exchange. Journal of Geophysical Research, 92, 1937–1949.

    Article  Google Scholar 

  21. Karlsson, J., Bystrom, P., Ask, J., Ask, P., Persson, L., & Jansson, M. (2009). Light limitation of nutrient-poor lake ecosystems. Nature, 460, 506–509.

    CAS  Article  Google Scholar 

  22. Koroleff, F. (1976). Determination of nutrients. In K. Grasshoff (Ed.), Methods of sea water analysis (pp. 117–181). Weinhein: Verlag Chemie.

    Google Scholar 

  23. Laas, A., Nõges, P., Kõiv, T., & Nõges, T. (2012). High-frequency metabolism study in a large and shallow temperate lake reveals seasonal switching between net autotrophy and net heterotrophy. Hydrobiologia, 694, 57–74.

    CAS  Article  Google Scholar 

  24. Lemes da Silva, A. L., Hennemann, M. C., & Petrucio, M. M. (2020). Phosphorus dynamics in a subtropical coastal lake in Southern Brazil. Journal of Limnology, 79, 1–12.

    Google Scholar 

  25. Lisboa, L. K., Lemes da Silva, A. L., Siegloch, A. E., Gonçalves, J. F. J., & Petrucio, M. M. (2014). Temporal dynamics of allochthonous coarse particulate organic matter in a subtropical Atlantic rainforest Brazilian stream. Marine and Freshwater Research, 66, 674–680.

    Article  CAS  Google Scholar 

  26. Lorenzen, C. J. (1967). Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography, 12, 343–346.

    CAS  Article  Google Scholar 

  27. Lovett, G. M., Cole, J. J., & Pace, M. (2006). Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems, 9, 1–4.

    Article  CAS  Google Scholar 

  28. MacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., & Miller, S. D. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters, 37.

  29. Mackereth F. J. H., Heron J. E. & Talling J. F. (1978). Water analysis: some revised methods for limnologists. Freshwater Biological Association, Scientific Publication 36.

  30. Obrador, B., Staehr, P. A., & Christensen, J. P. C. (2014). Vertical patterns of metabolism in three contrasting stratified lakes. Limnology and Oceanography, 59, 1228–1240.

    CAS  Article  Google Scholar 

  31. Odum, E. P. (1956). Primary production in flowing waters. Limnology and Oceanography, 1, 102–117.

    Article  Google Scholar 

  32. Pinheiro J., Bates D., DebRoy S. & Sarkar D. (2018). Nlme: linear and nonlinear mixed effect models. R package version 3.1–137.

  33. Platt, T., Gallegos, C. L., & Harrison, W. G. (1980). Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 38, 687–701.

    Google Scholar 

  34. R Core Team. (2019). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  35. Sager J. C. & McFarlane C. (1997). Radiation. In: Plant growth chamber handbook (eds R. W. Langhans & T. W. Tibbitts) pp. 1–30. Iowa Agriculture and Home Economics Experiment Station Special.

  36. Sadro, S., Nelson, C. E., & Melack, J. M. (2011). Linking diel patterns in community respiration to bacterioplankton in an oligotrophic high-elevation lake. Limnology and Oceanography, 56, 540–550.

    CAS  Article  Google Scholar 

  37. Sadro, S., & Melack, J. M. (2012). The effect of an extreme rain event on the biogeochemistry and ecosystem metabolism of an oligotrophic high-elevation lake. Arctic, Antarctic, and Alpine Research, 44, 222–231.

    Article  Google Scholar 

  38. Sand-Jensen, K., & Staehr, P. A. (2007). Scaling of pelagic metabolism to size, trophy and forest cover in small Danish lakes. Ecosystems, 10, 127–141.

    CAS  Article  Google Scholar 

  39. Sand-Jensen, K., & Staehr, P. A. (2009). Net heterotrophy in small Danish lakes: a widespread feature over gradients in trophic status and land cover. Ecosystems, 12, 336–348.

    CAS  Article  Google Scholar 

  40. Staehr, P. A., & Sand-Jensen, K. (2007). Temporal dynamics and regulation of lake metabolism. Limnology and Oceanography, 52, 108–120.

    CAS  Article  Google Scholar 

  41. Staehr, P. A., Sand-Jensen, K., Raun, A. L., Nilsson, B., & Kidmose, J. (2010). Drivers of metabolism and net heterotrophy in contrasting lakes. Limnology and Oceanography, 55, 817–830.

    CAS  Article  Google Scholar 

  42. Staehr, P. A., Asmala, E., Carstensen, J., Krause-Jensen, D., & Reader, H. (2018). Ecosystem metabolism of benthic and pelagic zones of a shallow productive estuary: spatio-temporal variability. Marine Ecology Progress Series, 601, 15–32.

    CAS  Article  Google Scholar 

  43. Solomon, C. T., Bruesewitz, D. A., Richardson, D. C., Rose, K. C., Van de Bogert, M. C., Hanson, P. C., Kratz, T. K., Larget, B., Adrian, R., Babin, B. L., Chiu, C., Hamilton, D. P., Gaiser, E. E., Hendricks, S., Istvanovics, V., Laas, A., O’Donnell, D. M., Pace, M. L., Ryder, E., Staehr, P. A., Torgersen, T., Vanni, M. J., Weathers, K. C., & Zhu, G. (2013). Ecosystem respiration: drivers of daily variability and background respiration in lakes around the globe. Limnology and Oceanography, 58, 849–866.

    CAS  Article  Google Scholar 

  44. Strickland, J. D. H., & Parsons, T. R. (1960). A manual of seawater analysis. Bulletin of Fisheries Research Board of Canada, 125, 1–18.

    Google Scholar 

  45. Tonetta, D., Petrucio, M. M., & Laudares-Silva, R. (2013). Temporal variation in phytoplankton community in a freshwater coastal lake of southern Brazil. Acta Limnologica Brasiliensia, 25, 99–110.

    Article  Google Scholar 

  46. Tonetta, D., Staehr, P. A., Schmitt, R., & Petrucio, M. M. (2016). Physical conditions driving the spatial and temporal variability in aquatic metabolism of a subtropical coastal lake. Limnologica, 58, 30–40.

    CAS  Article  Google Scholar 

  47. Tonetta, D., Staehr, P. A., & Petrucio, M. M. (2017). Changes in CO2 dynamics are related to the water level variations in a subtropical lake. Hydrobiologia, 794, 109–123.

    CAS  Article  Google Scholar 

  48. Tsai, J. W., Kratz, T. K., Hanson, P. C., Wu, J. T., Chang, W. Y. B., Arzberger, P. W., Lin, B. S., Lin, F. P., Chou, H. M., & Chiu, C. Y. (2008). Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lake. Freshwater Biology, 53, 1929–1941.

    CAS  Article  Google Scholar 

  49. Vachon, D., Prairie, Y. T., & Cole, J. J. (2010). The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnology and Oceanography, 55, 1723–1732.

    CAS  Article  Google Scholar 

  50. Weiss R.F. (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research and Oceanographic Abstracts 17 (4):721-735

  51. Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B, 73, 3–36.

    Article  Google Scholar 

  52. Wood S. N. (2017). Generalized additive models: an introduction with R, 2 edition. Chapman and Hall/CRC.

Download references

Acknowledgments

The authors are grateful to the Airspace Control Institute and Water and Sewage Company of Santa Catarina for providing, respectively, rainfall and water level data, and to FLORAM, LAPAD-UFSC, and PPGECO-UFSC for field and laboratory assistance. The authors are also grateful to Jesper Philip Aagaard Christensen for providing the valuable comments on an earlier version of the manuscript.

Funding

This work was supported by CNPq (National Council for Scientific and Technological Development). The first author was financially supported by the COCLAKE project (Carbon Cycling in Lakes—CAPES Proc. no.88881.030499/2013-01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Denise Tonetta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tonetta, D., Petrucio, M.M. Seasonal changes in primary production and respiration in a subtropical lake undergoing eutrophication. Environ Monit Assess 192, 565 (2020). https://doi.org/10.1007/s10661-020-08525-6

Download citation

Keywords

  • High frequency
  • Free-water metabolism
  • Net heterotrophy
  • Peri Lake
  • Eutrophication