Skip to main content

Advertisement

Log in

Assessment of volunteered geographic information for vegetation mapping

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Vegetation mapping requires extensive field data for training and validation. Volunteered geographic information in the form of geotagged photos of identified plants has the potential to serve as a supplemental data source for vegetation mapping projects. In this study, we compare the locations of specific taxa from the iNaturalist platform to locations identified on both a fine-scale vegetation map and high-resolution ortho-imagery in open-canopy shrubland in San Clemente Island, CA. Due to positional uncertainty associated with the iNaturalist observations, as well as the presence-only nature of the data, it was not possible to perform a traditional accuracy assessment. We instead measured the distance between the location recorded by an iNaturalist observer for a given taxon and the closest mapped individual of that taxon. This distance was within 10 m for a majority of the observations (64%). When comparing the iNaturalist location to the closest individual detected through image interpretation, 87% of the observations were within 10 m. The discrepancy in agreement between the vegetation map and imagery is likely due to mapping errors. While iNaturalist data come with important limitations, the platform is an excellent resource for supporting vegetation mapping and other ecological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apple Inc. (2020). Apple Developer Documentation. https://developer.apple.com/documentation/corelocation/clvisit/1614679-horizontalaccuracy#declarations.

  • Austen, G. E., Bindemann, M., Griffiths, R. A., & Roberts, D. L. (2018). Species identification by conservation practitioners using online images: accuracy and agreement between experts. PeerJ, 6, e4157. https://doi.org/10.7717/peerj.4157.

    Article  Google Scholar 

  • Beaubien, E. G., & Hall-Beyer, M. (2003). Plant phenology in Western Canada: trends and links to the view from space. Environmental Monitoring and Assessment, 88(1–3), 419–429. https://doi.org/10.1023/A:1025597829895.

    Article  Google Scholar 

  • Biederman, L. A., Derek, A., Nancy, S., John, P., Judy, B., & Jeanne, P. (2018). Using phenological monitoring in situ and historical records to determine environmental triggers for emergence and anthesis in the rare orchid Platanthera praeclara Sheviak & Bowles. Global Ecology and Conservation, 16, e00461. https://doi.org/10.1016/j.gecco.2018.e00461.

    Article  Google Scholar 

  • Conrad, C. C., & Hilchey, K. G. (2011). A review of citizen science and community-based environmental monitoring: issues and opportunities. Environmental Monitoring and Assessment, 176(1–4), 273–291. https://doi.org/10.1007/s10661-010-1582-5.

    Article  Google Scholar 

  • Eitzel, M. V., Cappadonna, J. L., Santos-Lang, C., Duerr, R. E., Virapongse, A., West, S. E., et al. (2017). Citizen science terminology matters: exploring key terms. Citizen Science: Theory and Practice, 2(1), 1. https://doi.org/10.5334/cstp.96.

    Article  Google Scholar 

  • ElQadi, M. M., Dorin, A., Dyer, A., Burd, M., Bukovac, Z., & Shrestha, M. (2017). Mapping species distributions with social media geo-tagged images: case studies of bees and flowering plants in Australia. Ecological Informatics, 39(February), 23–31. https://doi.org/10.1016/j.ecoinf.2017.02.006.

    Article  Google Scholar 

  • Elwood, S., Goodchild, M., & Sui, D. (2013). Crowdsourcing geographic knowledge: volunteered geographic information (VGI) in theory and practice. Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice, 9789400745, 1–396. https://doi.org/10.1007/978-94-007-4587-2.

    Article  Google Scholar 

  • Fonte, C. C., Bastin, L., See, L., Foody, G., & Lupia, F. (2015). Usability of VGI for validation of land cover maps. International Journal of Geographical Information Science, 29(7), 1269–1291. https://doi.org/10.1080/13658816.2015.1018266.

    Article  Google Scholar 

  • Foody, G. M., Pal, M., Rocchini, D., Garzon-Lopez, C. X., & Bastin, L. (2016). The sensitivity of mapping methods to reference data quality: training supervised image classifications with imperfect reference data. ISPRS International Journal of Geo-Information, 5(11). https://doi.org/10.3390/ijgi5110199.

  • Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4), 211–221. https://doi.org/10.1007/s10708-007-9111-y.

    Article  Google Scholar 

  • Hawthorne, T. L., Elmore, V., Strong, A., Bennett-Martin, P., Finnie, J., Parkman, J., Harris, T., Singh, J., Edwards, L., & Reed, J. (2015). Mapping non-native invasive species and accessibility in an urban forest: a case study of participatory mapping and citizen science in Atlanta, Georgia. Applied Geography, 56, 187–198. https://doi.org/10.1016/j.apgeog.2014.10.005.

    Article  Google Scholar 

  • Heider, K., Lopez, J. M. R., & Scheffran, J. (2018). The potential of volunteered geographic information to investigate peri-urbanization in the conservation zone of Mexico City. Environmental Monitoring and Assessment, 190(4), 219. https://doi.org/10.1007/s10661-018-6597-3.

    Article  Google Scholar 

  • Hereford, J., Schmitt, J., & Ackerly, D. D. (2017). The seasonal climate niche predicts phenology and distribution of an ephemeral annual plant, Mollugo verticillata. Journal of Ecology, 105(5), 1323–1334. https://doi.org/10.1111/1365-2745.12739.

    Article  Google Scholar 

  • iNaturalist. (2019a). What is it. https://www.inaturalist.org/pages/what+is+it. Accessed 24 February 2020.

  • iNaturalist. (2019b). Trips enable the collection of presence-absence data by adding context to your observations. https://www.inaturalist.org/pages/trips. Accessed 24 February 2020.

  • Isaac, N. J. B., van Strien, A. J., August, T. A., de Zeeuw, M. P., & Roy, D. B. (2014). Statistics for citizen science: extracting signals of change from noisy ecological data. Methods in Ecology and Evolution, 5(10), 1052–1060. https://doi.org/10.1111/2041-210X.12254.

    Article  Google Scholar 

  • Iwao, K., Nishida, K., Kinoshita, T., & Yamagata, Y. (2006). Validating land cover maps with degree confluence project information. Geophysical Research Letters, 33(23), 1–5. https://doi.org/10.1029/2006GL027768.

    Article  Google Scholar 

  • Jacobs, C., & Zipf, A. (2017). Completeness of citizen science biodiversity data from a volunteered geographic information perspective. Geo-Spatial Information Science, 20(1), 3–13. https://doi.org/10.1080/10095020.2017.1288424.

    Article  Google Scholar 

  • Jensen, J. R. (2007). Remote sensing of the environment: an earth resource perspective (2nd ed.). Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Keßler, C., Maué, P., Heuer, J. T., & Bartoschek, T. (2009). Bottom-up gazetteers: learning from the implicit semantics of geotags. In International conference on GeoSpatial Sematics (pp. 83–102). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-10436-7_6.

  • Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A., & Lorda, J. (2019). Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Marine Biodiversity Records, 12(1), 1–15. https://doi.org/10.1186/s41200-019-0171-8.

    Article  Google Scholar 

  • Merry, K., & Bettinger, P. (2019). Smartphone GPS accuracy study in an urban environment. PLoS One, 14(7), e0219890. https://doi.org/10.1371/journal.pone.0219890.

    Article  CAS  Google Scholar 

  • Miller-Rushing, A. J., Primack, R. B., Primack, D., & Mukunda, S. (2006). Photographs and herbarium specimens as tools to document phenological changes in response to global warming. American Journal of Botany, 93(11), 1667–1674. https://doi.org/10.3732/ajb.93.11.1667.

    Article  Google Scholar 

  • Mueller, M. A., Drake, D., & Allen, M. L. (2019). Using citizen science to inform urban canid management. Landscape and Urban Planning, 189(May 2018), 362–371. https://doi.org/10.1016/j.landurbplan.2019.04.023.

    Article  Google Scholar 

  • Pimm, S. L., Alibhai, S., Bergl, R., Dehgan, A., Giri, C., Jewell, Z., Joppa, L., Kays, R., & Loarie, S. (2015). Emerging technologies to conserve biodiversity. Trends in Ecology & Evolution, 30(11), 685–696. https://doi.org/10.1016/j.tree.2015.08.008.

    Article  Google Scholar 

  • Powell, R. L., Matzke, N., De Souza, C., Clark, M., Numata, I., Hess, L. L., et al. (2004). Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sensing of Environment, 90(2), 221–234. https://doi.org/10.1016/j.rse.2003.12.007.

    Article  Google Scholar 

  • Richart, C. H., Chichester, L. F., Boyer, B., & Pearce, T. A. (2018). Rediscovery of the southern California endemic American Keeled Slug Anadenulus cockerelli (Hemphill, 1890) after a 68-year hiatus. Journal of Natural History, 53, 1515–1531. https://doi.org/10.1080/00222933.2018.1447700.

    Article  Google Scholar 

  • Rocchini, D., Petras, V., Petrasova, A., Horning, N., Furtkevicova, L., Neteler, M., Leutner, B., & Wegmann, M. (2017). Open data and open source for remote sensing training in ecology. Ecological Informatics, 40(May), 57–61. https://doi.org/10.1016/j.ecoinf.2017.05.004.

    Article  Google Scholar 

  • Sawyer, J. O., Keeler-Wolf, T., & Evens, J. M. (2009). A manual of California vegetation (Second ed.). Sacramento: California Native Plant Society.

    Google Scholar 

  • Schoenherr, A. A., Feldmeth, C. R., & Emerson, M. J. (2003). Natural history of the islands of California. Berkeley: Univ of California Press.

  • See, L., Mooney, P., Foody, G., Bastin, L., Comber, A., Estima, J., Fritz, S., Kerle, N., Jiang, B., Laakso, M., Liu, H. Y., Milčinski, G., Nikšič, M., Painho, M., Pődör, A., Olteanu-Raimond, A. M., & Rutzinger, M. (2016). Crowdsourcing, citizen science or volunteered geographic information? The current state of crowdsourced geographic information. ISPRS International Journal of Geo-Information, 5(5). https://doi.org/10.3390/ijgi5050055.

  • Senaratne, H., Mobasheri, A., Ali, A. L., Capineri, C., & Haklay, M.(Muki). (2017). A review of volunteered geographic information quality assessment methods. International Journal of Geographical Information Science, 31(1), 139–167. https://doi.org/10.1080/13658816.2016.1189556.

    Article  Google Scholar 

  • Snavely, R., Uyeda, K., Stow, D., O’Leary, J., & Lambert, J. (2019). Mapping vegetation community types in a highly-disturbed landscape: integrating hierarchical object-based image analysis with lidar-derived canopy height data. International Journal of Remote Sensing, 40(11), 4384–4400. https://doi.org/10.1080/01431161.2018.1562588.

    Article  Google Scholar 

  • Taylor, A. T., Von Schmeling, H., & Long, J. M. (2018). Photographs of wading bird depredation update invasion extent of Monopterus albus (Asian swamp eel). Southeastern Naturalist, 17(4), 72–76. https://doi.org/10.1656/058.017.0408.

    Article  Google Scholar 

  • Tierra Data Inc. (2011). San Clemente Island vegetation condition and trend analysis, 2010. San Diego: Southwest Division U.S. Naval Facilities Engineering Command.

    Google Scholar 

  • Tomaštík Jr., J., Tomaštík Sr., J., Saloň, Š., & Piroh, R. (2017). Horizontal accuracy and applicability of smartphone GNSS positioning in forests. Forestry, 90(2), 187–198. https://doi.org/10.1093/forestry/cpw031.

    Article  Google Scholar 

  • USDA Farm Service Agency. (2020). NAIP Imagery. https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/. Accessed 24 February 2020.

  • Uyeda, K. A., Warkentin, K. K., Stow, D. A., O’Leary, J. F., Snavely, R., Lambert, J., et al. (2019). Vegetation mapping using hierarchical object-based image analysis applied to aerial imagery and lidar data. Applied Vegetation Science, 23(1), 80-93. https://doi.org/10.1111/avsc.12467.

  • Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., et al. (2017). The iNaturalist species classification and detection dataset. In CVPR (pp. 4–6).

  • Van Strien, A. J., Van Swaay, C. A. M., & Termaat, T. (2013). Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. Journal of Applied Ecology, 50(6), 1450–1458. https://doi.org/10.1111/1365-2664.12158.

    Article  Google Scholar 

  • Vandenlangenberg, S. M., Canfield, J. T., & Magner, J. A. (2003). A regional survey of malformed frogs in Minnesota (USA) (Minnesota malformed frogs). Environmental Monitoring and Assessment, 82(1), 45–61. https://doi.org/10.1023/A:1021684723301.

    Article  Google Scholar 

  • Waldner, F., Schucknecht, A., Lesiv, M., Gallego, J., See, L., Pérez-Hoyos, A., d'Andrimont, R., de Maet, T., Bayas, J. C. L., Fritz, S., Leo, O., Kerdiles, H., Díez, M., van Tricht, K., Gilliams, S., Shelestov, A., Lavreniuk, M., Simões, M., Ferraz, R., Bellón, B., Bégué, A., Hazeu, G., Stonacek, V., Kolomaznik, J., Misurec, J., Verón, S. R., de Abelleyra, D., Plotnikov, D., Mingyong, L., Singha, M., Patil, P., Zhang, M., & Defourny, P. (2019). Conflation of expert and crowd reference data to validate global binary thematic maps. Remote Sensing of Environment, 221(October 2018), 235–246. https://doi.org/10.1016/j.rse.2018.10.039.

    Article  Google Scholar 

  • Wallace, C. S. A., Walker, J. J., Skirvin, S. M., Patrick-Birdwell, C., Weltzin, J. F., & Raichle, H. (2016). Mapping presence and predicting phenological status of invasive buffelgrass in Southern Arizona using MODIS, climate and citizen science observation data. Remote Sensing, 8(7). https://doi.org/10.3390/rs8070524.

Download references

Acknowledgments

This research would not have been possible without the contributions of numerous iNaturalist users. In addition to the observations of author CHR, iNaturalist users whose observations were used in this research include cedric_lee, vireolanius, shrike2, dmathews, jrebman, stephanomeria, serpophaga, elizabercel, empid, sulavanderplank, madpurdy,stephlbartlett, sue_meiman, terrilldactyl, demi5, jennyh, sabrinamashburn and taylorsteichen.

Availability of data and material (data transparency)

Available at https://arcg.is/1GLPH0

Code availability

Not applicable.

Funding

This project was funded under agreement (Cooperative Agreement Award No: W9126G-18-2-0068) by the U.S. Army Corps of Engineers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kellie A. Uyeda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uyeda, K.A., Stow, D.A. & Richart, C.H. Assessment of volunteered geographic information for vegetation mapping. Environ Monit Assess 192, 554 (2020). https://doi.org/10.1007/s10661-020-08522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08522-9

Keywords

Navigation