Skip to main content

Advertisement

Log in

Anaerobic digestion of fourth range fruit and vegetable products: comparison of three different scenarios for its valorisation by life cycle assessment and life cycle costing

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Changes in consumer demand due to preferences for a healthier lifestyle have led to a new market offering fruit and salad products ready to eat. This affects the agro-industrial sector and the characteristic of waste streams generated having the organic fraction higher quality and representing a new opportunity of valorisation. This study experimentally evaluated the digestion of wastes derived from the fourth range product sector. It was also proposed the use of this digestate as a fermentation medium for producing plant growth-promoting cultures. Three digestion scenarios were studied: Scenario 1 considered biogas valorisation using a combined heat and power (CHP) unit. Scenario 2 featured biogas upgrading to be used as vehicle fuel. Finally, scenario 3 evaluated the transport of waste materials to the digestion plant by a network of pipes and pumps directly from the production chain. All three scenarios included the land application of a biostimulator based on the production of a plant growth-promoting culture derived from digestate. Life cycle analysis and life cycle costing were used to determine potential environmental impacts and costs over a lifetime of 25 years. The study showed that scenario 1 was the most favourable option for valorising this type of waste, although the economic assessment resulted in negative values for all three alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • 2.-0 LCA Consultants (2003). LCA food DK. http://www.lcafood.dk. Accessed 10 Nov 2016.

  • Abduli, M. A., Naghib, A., Yonesi, M., & Akbari, A. (2011). Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill. Environmental Monitoring and Assessment, 178(1–4), 487–498.

    CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water & wastewater, American Public Health (Association. ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • Berlund, M., & Börjesson, P. (2006). Assesment of energy performance in the life cycle of biogas production. Biomass & Bioenergy, 30, 254–256.

    Google Scholar 

  • Bouallagui, H., Lahdheb, H., Romdan, E. B., Rachdi, B., & Hamdi, M. (2009). Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management, 90(5), 1844–1849.

    CAS  Google Scholar 

  • Browne, J., Nizami, A. S., Thamsiriroj, T., & Murphy, J. D. (2011). Assessing the cost of biofuel production with increasing penetration of the transport fuel market: a case study of gaseous biomethane in Ireland. Renewable and Sustainable Energy Reviews, 15(9), 4537–4547.

    Google Scholar 

  • Cano, R., Nielfa, A., & Fdz-Polanco, M. (2014). Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study. Bioresource Technoly, 168, 14–22.

    CAS  Google Scholar 

  • Carnevale, E., & Lombardi, L. (2015). Comparison of different possibilities for biogas use by life cycle assessment. Energy Procedia, 81, 215–226.

    CAS  Google Scholar 

  • Centre of Environmental Science (2000) L.U., The Netherlands,. CML 2 baseline 2000 method. www.leidenuniv.nl/interfac/cml. Accessed 18 Dec 2017.

  • Chastain, J. P., Vanotti, M. B., & Wingfield, M. M. (2001). Effectiveness of liquid-solid separation for treatment of flushed dairy manure: a case study. Applied Engineering in Agriculture, 17(3), 343–354.

    Google Scholar 

  • Choudhary, M., Meena, V. S., Yadav, R. P., Parihar, M., Pattanayak, A., Panday, S. C., et al. (2019). Does PGPR and mycorrhizae enhance nutrient use efficiency and efficacy in relation to crop productivity?. In Field crops: sustainable management by PGPR (pp. 45–68). Springer, Cham.

  • Cucchiella, F., Idiano, D., & Gastaldi, M. (2015). Profitability analysis for biomethane: a strategic role in the Italian transport sector. International Journal of Energy Economics and Policy, 5(2), 440–449.

    Google Scholar 

  • Cuetos, M. J., Martinez, E. J., Moreno, R., Gonzalez, R., Otero, M., & Gomez, X. (2016). Enhancing anaerobic digestion of poultry blood using activated carbon. Journal of Advanced Research, 8(3), 297–307.

    Google Scholar 

  • Dahlin, J., Herbes, C., & Nelles, M. (2015). Biogas digestate marketing: qualitative insights into the supply side. Resources, Conservation and Recycling, 104, 152–161.

    Google Scholar 

  • Delft University of Technology (2001). Idemat 2001. http://www.idemat.nl. Accessed 2 Feb 2017.

  • Di Maria, F., & Micale, C. (2015). Life cycle analysis of incineration compared to anaerobic digestion followed by composting for managing organic waste: the influence of system components for an Italian district. The International Journal of Life Cycle Assessment, 20(3), 377–388.

    Google Scholar 

  • ESU-Services (1996). ETH-ESU 96 life cycle inventory database. http://esu-services.ch/data/data-on-demand/. Accessed 10 Jun 2018.

  • Eurostat (2017). The fruit and vegetable sector in the EU-a statistical overview. February 2017. http://ec.europa.eu/eurostat/statistics-explained/index.php/The_fruit_and_vegetable_sector_in_the_EU_-_a_statistical_overview. Accessed 8 May 2020.

  • Evangelisti, S., Lettieri, P., Borello, D., & Clift, R. (2014). Life cycle assessment of energy from waste via anaerobic digestion: a UK case study. Waste Management, 34(1), 226–237.

    CAS  Google Scholar 

  • Fierro, J., Gómez, X., & Murphy, J. D. (2014). What is the resource of second generation gaseous transport biofuels based on pig slurries in Spain? Applied Energy, 114, 783–789.

    CAS  Google Scholar 

  • Frischknecht, R., & Rebitzer, G. (2005). The ecoinvent database system: a comprehensive web-based LCA database. Journal of Cleaner Production, 13, 1337–1343.

    Google Scholar 

  • Frischknecht, R., Jungbluth, N., Althaus, H.-J., Doka, G., Dones, R., Heck, T., Hellweg, S., Hischier, R., Nemecek, T., Rebitzer, G., & Spielmann, M. (2005). The ecoinvent database: overview and methodological framework. The International Journal of Life Cycle Assessment, 10, 3–9.

    CAS  Google Scholar 

  • Garnett, T. (2011). Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy, 36(Supplement 1), S23–S32.

    Google Scholar 

  • Ghafoori, E., Flynn, P. C., & Feddes, J. J. (2007). Pipeline vs. truck transport of beef cattle manure. Biomass & Bioenergy, 31(2), 168–175.

    Google Scholar 

  • Gonzalez-Gil, G., Seghezzo, L., Lettinga, G., & Kleerebezem, R. (2001). Kinetics and mass-transfer phenomena in anaerobic granular sludge. Biotechnology and Bioengineering, 73(2), 125–134.

    CAS  Google Scholar 

  • Gourdet, C., Girault, R., Berthault, S., Richard, M., Tosoni, J., & Pradel, M. (2017). In quest of environmental hotspots of sewage sludge treatment combining anaerobic digestion and mechanical dewatering: a life cycle assessment approach. Journal of Cleaner Production, 143, 1123–1136.

    CAS  Google Scholar 

  • Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., Koning, A.D., Oers, L.V., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., Bruijn, H.D., Duin, R.V., Huijbregts, M.A.J., 2002. Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, Dordrecht. http://www.springer.com/gp/book/9781402002281. Accessed 10 Jun 2017.

  • Hadidi, L. A., & Omer, M. M. (2017). A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Waste Management, 59, 90–101.

    Google Scholar 

  • Hischier, R., Weidema, B., Althaus, H.J., Bauer, C., Doka, G., Dones, R., Frischknecht, R., Hellweg, S., Humbert, S., Jungbluth, N., Köllner, T., Loerincik, Y., Margni, M., Nemecek, T., 2010. Implementation of life cycle impact assessment methods. Ecoinvent report No. 3, v 2.2. Swiss Centre for Life Cycle Inventories, Dübendorf. http://www.ecoinvent.org/files/201007_hischier_weidema_implementation_of_lcia_methods.pdf

  • Islam, H., Jollands, M., Setunge, S., Ahmed, I., & Haque, N. (2014). Life cycle assessment and life cycle cost implications of wall assemblages designs. Energy and Buildings, 84, 33–45.

    Google Scholar 

  • Kaur, G., Wong, J. W., Kumar, R., Patria, R. D., Bhardwaj, A., Uisan, K., Johnravindar, D. (2020). Value addition of anaerobic digestate from biowaste: thinking beyond agriculture. Current Sustainable Renewable Energy Reports. https://doi.org/10.1007/s40518-020-00148-2

  • Kumar, A., Cameron, J. B., & Flynn, P. C. (2004). Pipeline transport of biomass. Applied Biochemistry and Biotechnology, 113(1–3), 27–39.

    Google Scholar 

  • Lane, A. G. (1984). Laboratory scale anaerobic digestion of fruit and vegetable solid waste. Biomass, 5, 245–259.

    CAS  Google Scholar 

  • Lantz, M., & Börjesson, P. (2014). Greenhouse gas and energyassessment of the biogas from co-digestion injected into the natural gas grid: a Swedish case-study including effects on soil properties. Renewable Energy, 71, 387–395.

    Google Scholar 

  • MAPA, 1994. Métodos Oficiales de Análisis. Direccion General de Politica Alimentaria, Ministerio de Agricultura, Pesca y Alimentación., Madrid.

  • Maris, S. C., Lloveras, J., Vallejo, A., & Teira-Esmatges, M. R. (2018). Effect of stover management and nitrogen fertilization on N2O and CO2 emissions from irrigated maize in a high nitrate Mediterranean soil. Water, Air, & Soil Pollution, 229(1), 11.

    Google Scholar 

  • Martinez-Sanchez, V., Kromann, M. A., & Astrup, T. F. (2015). Life cycle costing of waste management systems: overview, calculation principles and case studies. Waste Management, 36, 343–355.

    Google Scholar 

  • Martinez-Sanchez, V., Tonini, D., Møller, F., & Astrup, T. F. (2016). Life-cycle costing of food waste management in Denmark: importance of indirect effects. Environmental Science & Technology, 50(8), 4513–4523.

    CAS  Google Scholar 

  • Mills, N., Pearce, P., Farrow, J., Thorpe, R. B., & Kirkby, N. F. (2014). Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Management, 34(1), 185–195.

    CAS  Google Scholar 

  • Moghaddam, E. A., Ahlgren, S., Hulteberg, C., & Nordberg, Å. (2015). Energy balance and global warming potential of biogas-based fuels from a life cycle perspective. Fuel Processing Technology, 132, 74–82.

    Google Scholar 

  • Molinuevo-Salces, B., García-González, M. C., González-Fernández, C., Cuetos, M. J., Morán, A., & Gómez, X. (2010). Anaerobic co-digestion of livestock wastes with vegetable processing wastes: a statistical analysis. Bioresource Technology, 101(24), 9479–9485.

    CAS  Google Scholar 

  • Naroznova, I., Møller, J., Scheutz, C., & Lagerkvist, A. (2015). Importance of food waste pre-treatment efficiency for global warming potential in life cycle assessment of anaerobic digestion systems. Resources, Conservation and Recycling, 102, 58–66.

    Google Scholar 

  • Norris, G. A. (2001). Integrating life cycle cost analysis and LCA. The International Journal of Life Cycle Assessment, 6(2), 118–120.

    Google Scholar 

  • Pastor-Bueis, R., Mulas, R., Gómez, X., González-Andrés, F., (2017). Innovative liquid formulation of digestates for producing a biofertilizer based on Bacillus siamensis: field testing on sweet pepper. Journal of Plant Nutrition and Soil Science, 1–11.

  • Sadhukhan, J., Dugmore, T. I., Matharu, A., Martinez-Hernandez, E., Aburto, J., Rahman, P. K., & Lynch, J. (2020). Perspectives on “game changer” global challenges for sustainable 21st century: plant-based diet, unavoidable food waste biorefining, and circular economy. Sustainability, 12(5), 1976.

    Google Scholar 

  • Santos, S. M., Silva, M. M., Melo, R. M., Gavazza, S., Florencio, L., & Kato, M. T. (2017). Multi-criteria analysis for municipal solid waste management in a Brazilian metropolitan area. Environmental Monitoring and Assessment, 189(11), 561.

    Google Scholar 

  • Sharma, R., & Gupta, K. (2020). Life cycle modeling for environmental management: a review of trends and linkages. Environmental Monitoring and Assessment, 192, 51.

    Google Scholar 

  • Srivastava, V., Vaish, B., Singh, R. P., & Singh, P. (2020). An insight to municipal solid waste management of Varanasi city, India, and appraisal of vermicomposting as its efficient management approach. Environmental Monitoring and Assessment, 192(3), 1–23.

    Google Scholar 

  • Starr, K., Gabarrell, X., Villalba, G., Talens, L., & Lombardi, L. (2012). Life cycle assessment of biogas upgrading technologies. Waste Management, 32(5), 991–999.

    CAS  Google Scholar 

  • Swarr, T. E., Hunkeler, D., Klöpffer, W., Pesonen, H. L., Ciroth, A., Brent, A. C., & Pagan, R. (2011). Environmental life-cycle costing: a code of practice. The International Journal of Life Cycle Assessment, 16, 389–391.

    Google Scholar 

  • Swiss Centre for Life Cycle Inventories (2010). Ecoinvent 2.2. http://www.ecoinvent.org/home.html. Accessed 10 Nov 2017.

  • Swiss Packaging Institute (2000). Buwal 250 library. Accessed 12 Dec 2017.

  • United Nations Environment Programme (UNEP) (2016). Food and food waste. http://web.unep.org/resourceefficiency/what-we-do/sustainable-lifestyles/food-and-food-waste. Accessed 2 Feb 2018.

  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.

    Google Scholar 

  • Vaneeckhaute, C., Lebuf, V., Michels, E., Belia, E., Vanrolleghem, P. A., Tack, F. M., & Meers, E. (2017). Nutrient recovery from digestate: systematic technology review and product classification. Waste and Biomass Valorization, 8(1), 21–40.

    CAS  Google Scholar 

  • Whiting, A., & Azapagic, A. (2014). Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy, 70, 181–193.

    Google Scholar 

  • Yapıcı, H., Kayataş, N., Albayrak, B., & Baştürk, G. (2005). Numerical calculation of local entropy generation in a methane–air burner. Energy Conversion and Management, 46(11-12), 1885–1919.

Download references

Funding

The authors received funding support from Comapitol and Biomasa Peninsular that between them formed the FLEXINER project reported in this paper. Views expressed herein are those of the authors alone. This research was funded by Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional through the project ref.: UNLE15-EE-3070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiomar Gómez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 12 kb)

ESM 2

(DOCX 14 kb)

ESM 3

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, R., Rosas, J.G., Blanco, D. et al. Anaerobic digestion of fourth range fruit and vegetable products: comparison of three different scenarios for its valorisation by life cycle assessment and life cycle costing. Environ Monit Assess 192, 551 (2020). https://doi.org/10.1007/s10661-020-08521-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08521-w

Keywords

Navigation