Impacts of industrial atmospheric emissions on watershed export of dissolved ions in coastal streams: a Bayesian modeling approach

Abstract

Anthropogenic atmospheric emission and subsequent deposition of sulfur (S) has been linked to disrupted watershed biogeochemical processes through soil and surface water acidification. We investigated watershed-scale impacts of acidic deposition on tributary concentrations and watershed exports of major nutrients and ions for the Kitimat River Watershed, British Columbia. Since the 1950s, the Kitimat watershed had an aluminum smelting facility with substantial emissions at the river estuary. Emissions load the airshed overlying the watershed and potentially impact western tributaries leaving eastern tributaries available as reference. We assessed concentrations and export of key compounds in three reference and six potentially impacted tributaries and watersheds in 2015 and 2016. Sulfate (SO4), fluoride (F), nitrate (NO3), and chloride (Cl) were significantly higher in impacted tributaries. F concentrations exceeded the Canadian Council of Ministers of the Environment guideline for aquatic life in 83% of samples collected from impacted streams. Watershed export and associated uncertainty were determined by bootstrapped flow-stratified Beale’s unbiased estimator. Impact of emissions on watershed export was modeled in a Bayesian approach to include variance in the export estimate to inform the uncertainty of model parameters. Export of SO4 and Ca increased significantly within 16 km and 8 km, respectively, toward the smelter emissions. The corresponding impacted area for SO4 and Ca was approximately 100 km2 and 45 km2, respectively. SO4 export is likely due to direct impacts of S deposition, with excess S being flushed from the watersheds. Ca export patterns likely result from indirect impacts of S deposition on soil chemistry and flushing of Ca. These impacts may contribute to effects within tributaries on benthic stream communities and regionally important juvenile Pacific salmon.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2.
Fig. 3

Data availability

Materials presented in this manuscript are available upon request from the authors.

R code and data used in this manuscript are available at Zenodo.org, doi 10.5281/zenodo.3822367.

References

  1. April, R., Keller, D., & Hluchy, M. (2016). Soils and soil acidification in the Adirondack Mountains. Adirondack Journal of Environmental Studies, 21(1), 12.

    Google Scholar 

  2. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  3. Beale, E. M. L. (1962). Some uses of computers in operational research. Industrielle Organisation, 31(1), 27–28.

    Google Scholar 

  4. Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika, 52(3), 345–370.

    Article  Google Scholar 

  5. Bunce, H. W. F. (1989). The continuing effects of aluminium smelter emissions on coniferous forest growth. Forestry: An International Journal of Forest Research, 62(3), 223–231.

    Article  Google Scholar 

  6. CABIN. (2012). Field manual: wadeable streams, Canadian Aquatic Biomonitoring Network. Environment Canada, Ottawa, ON (Vol. 6). http://publications.gc.ca/collections/collection_2012/ec/En84-87-2012-eng.pdf

  7. Carey, J. C., & Fulweiler, R. W. (2013). Watershed land use alters riverine silica cycling. Biogeochemistry, 113(1–3), 525–544.

    CAS  Article  Google Scholar 

  8. Cowden, P., & Aherne, J. (2019). Assessment of atmospheric metal deposition by moss biomonitoring in a region under the influence of a long standing active aluminium smelter. Atmospheric Environment, 201, 84–91.

    CAS  Article  Google Scholar 

  9. Dolan, D. M., Yui, A. K., & Geist, R. D. (1981). Evaluation of river load estimation methods for total phosphorus. Journal of Great Lakes Research, 7(3), 207–214.

    CAS  Article  Google Scholar 

  10. ESSA Technologies, Aherne, J., Cheng, H., Hall, A., Henolson, A., Laurence, J., Marmorek, D., Murray, C., and Watmough, S. (2019). Sulphur Dioxide Environmental Effects Monitoring for the Kitimat Modernization Project. Detailed Terms of Reference for the 2019 Comprehensive Review. Report prepared for Rio Tinto, BC Works. 36 pp.

  11. ESSA Technologies, Laurence, J., Limnotek, Risk Sciences International, Rio Tinto Alcan, Trent University, et al. (2013). Sulphur dioxide technical assessment report in support of the 2013 application to amend the P2-00001 multimedia permit for the Kitimat Modernization Project. Report prepared for Rio Tinto Alcan, Kitimat, B.C. 37 pp.

  12. ESSA Technologies, Laurence, J., Risk Sciences International, Trent University, and Trinity Consultants (2014). Kitimat airshed emissions effects assessment. Report prepared for BC Ministry of Environment, Smithers, BC. 205 pp. + appendices. http://www.bcairquality.ca/airsheds/kitimat-airshed-assessment.html.

  13. Federer, C. A., Hornbeck, J. W., Tritton, L. M., Martin, C. W., Pierce, R. S., & Smith, C. T. (1989). Long-term depletion of calcium and other nutrients in eastern US forests. Environmental Management, 13(5), 593–601.

    Article  Google Scholar 

  14. Feller, M. C. (1987). The influence of acid precipitation on stream chemistry in a small forested basin in southwestern British Columbia. Forest Hydrology and Watershed Management, 167, 33.

    CAS  Google Scholar 

  15. Feller, M. C. (2010). Trends in precipitation and streamwater chemistry in East Creek watershed in southwestern British Columbia, 1971–2008. Journal of Limnology, 77–91.

  16. Fulweiler, R. W., & Nixon, S. W. (2005). Terrestrial vegetation and the seasonal cycle of dissolved silica in a southern New England coastal river. Biogeochemistry, 74(1), 115–130.

    Article  Google Scholar 

  17. Hocking, M. B., Hocking, D., & Smyth, T. A. (1980). Fluoride distribution and dispersion processes about an industrial point source in a forested coastal zone. Water, Air, and Soil Pollution, 14(1), 133–157.

    CAS  Article  Google Scholar 

  18. Jeziorski, A., Tanentzap, A. J., Yan, N. D., Paterson, A. M., Palmer, M. E., Korosi, J. B., Rusak, J. A., Arts, M. T., Keller, W. B., Ingram, R., Cairns, A., & Smol, J. P. (2015). The jellification of north temperate lakes. Proceedings of the Royal Society B: Biological Sciences, 282(1798), 20142449.

    Article  Google Scholar 

  19. Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in ecology & evolution, 19(2), 101–108.

    Article  Google Scholar 

  20. Kalugina, O. V., Mikhailova, T. A., & Shergina, O. V. (2017). Pinus sylvestris as a bio-indicator of territory pollution from aluminum smelter emissions. Environmental Science and Pollution Research, 24(11), 10279–10291.

    CAS  Article  Google Scholar 

  21. Kratz, K. W., Cooper, S. D., & Melack, J. M. (1994). Effects of single and repeated experimental acid pulses on invertebrates in a high altitude Sierra Nevada stream. Freshwater Biology, 32(1), 161–183.

    Article  Google Scholar 

  22. Likens, G. E., Driscoll, C. T., & Buso, D. C. (1996a). Long-term effects of acid rain: response and recovery of a forest ecosystem. Science.

  23. Likens, G., Driscoll, C. T., Buso, D. C., Mitchell, M. J., Lovett, G., Bailey, S., et al. (1996b). Soils and soil acidification in the Adirondack Mountains. Science.

  24. Maguire, T. J., & Fulweiler, R. W. (2017). The fate and effect of dissolved silicon within wastewater treatment effluent. Environmental science & technology, 51(13), 7403–7411. https://doi.org/10.1021/acs.est.7b01276.

    CAS  Article  Google Scholar 

  25. McLinden, C. A., Fioletov, V., Shephard, M. W., Krotkov, N., Li, C., Martin, R. V Martin R. V., Moran M. D., Joiner J. (2016). Space-based detection of missing sulfur dioxide sources of global air pollution. Nature Geoscience, 9(7), 496, 500.

  26. Meybeck, M. (1982). Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci, 282(4), 401–450.

    CAS  Article  Google Scholar 

  27. Mitchell, M. J., Lovett, G., Bailey, S., Beall, F., Burns, D., Buso, D., Clair, T. A., Courchesne, F., Duchesne, L., Eimers, C., Fernandez, I., Houle, D., Jeffries, D. S., Likens, G. E., Moran, M. D., Rogers, C., Schwede, D., Shanley, J., Weathers, K. C., & Vet, R. (2011). Comparisons of watershed sulfur budgets in southeast Canada and northeast US: new approaches and implications. Biogeochemistry, 103(1–3), 181–207.

    CAS  Article  Google Scholar 

  28. Myrbo, A., Swain, E. B., Johnson, N. W., Engstrom, D. R., Pastor, J., Dewey, B., Monson, P., Brenner, J., Dykhuizen Shore, M., & Peters, E. B. (2017). Increase in nutrients, mercury, and methylmercury as a consequence of elevated sulfate reduction to sulfide in experimental wetland mesocosms. Journal of Geophysical Research: Biogeosciences, 122(11), 2769–2785.

    CAS  Google Scholar 

  29. Nesbitt, H. K., & Moore, J. W. (2016). Species and population diversity in Pacific salmon fisheries underpin indigenous food security. Journal of applied ecology, 53(5), 1489–1499.

    Article  Google Scholar 

  30. Ohrui, K., & Mitchell, M. J. (1997). Nitrogen saturation in Japanese forested watersheds. Ecological applications, 7(2), 391–401.

    Article  Google Scholar 

  31. Prietzel, J., Mayer, B., & Legge, A. H. (2004). Cumulative impact of 40 years of industrial sulfur emissions on a forest soil in west-central Alberta (Canada). Environmental pollution, 132(1), 129–144.

    CAS  Article  Google Scholar 

  32. Rabnett, K. (2014). Lower Kitimat Watershed & Estuary Restoration Priorities . (P. for H. F. & C. DFO, Ed.) Restoration & compensation review. Suskwa Research.

  33. Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: science and applications (1st ed.). Boca Raton: CRC press.

    Google Scholar 

  34. Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46(3), 230A–221.

  35. Reid, C. R., & Watmough, S. A. (2016). Spatial patterns, trends, and the potential long-term impacts of tree harvesting on lake calcium levels in the Muskoka River Watershed, Ontario, Canada. Canadian journal of fisheries and aquatic sciences, 73(3), 382–393.

    CAS  Article  Google Scholar 

  36. Rice, K. C., Scanlon, T. M., Lynch, J. A., & Cosby, B. J. (2014). Decreased atmospheric sulfur deposition across the southeastern US: when will watersheds release stored sulfate? Environmental science & technology, 48(17), 10071–10078.

    CAS  Article  Google Scholar 

  37. Rio Tinto. (2018). Environmental Report BC Works. Kitimat BC, Canada: Rio Tinto Plc. http://www.riotinto.com/documents/2018_BC_Works_environmental_report.pdf

  38. Schlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: an analysis of global change (3rd ed.). Waltham: Elsevier.

    Google Scholar 

  39. Sleighter, R. L., Chin, Y.-P., Arnold, W. A., Hatcher, P. G., McCabe, A. J., McAdams, B. C., & Wallace, G. C. (2014). Evidence of incorporation of abiotic S and N into prairie wetland dissolved organic matter. Environmental Science & Technology Letters, 1(9), 345–350.

    CAS  Article  Google Scholar 

  40. Sparks, & Donald, L. (2017). Environmental Soil Chemistry. US: Academic Press.

    Google Scholar 

  41. Tréguer, P., & De La Rocha, C. (2013). The world ocean silica cycle. Annual Review of Marine Science, 5, 477–501.

    Article  Google Scholar 

  42. Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., Rao, P. S. P., & Reid, N. W. (2014). A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment, 93, 3–100.

    CAS  Article  Google Scholar 

  43. Williston, P., Aherne, J., Watmough, S., Marmorek, D., Hall, A., de la Cueva Bueno, P., Murray, C., Henolson, A., & Laurence, J. A. (2016). Critical levels and loads and the regulation of industrial emissions in northwest British Columbia, Canada. Atmospheric environment, 146, 311–323.

    CAS  Article  Google Scholar 

  44. Wright, R. F., & Schindler, D. W. (1995). Interaction of acid rain and global changes: effects on terrestrial and aquatic ecosystems. Water, Air, and Soil Pollution, 85(1), 89–99.

    CAS  Article  Google Scholar 

  45. Yan, N. D., Mackie, G. L., & Boomer, D. (1989). Seasonal patterns in metal levels of the net plankton of three Canadian Shield lakes. Science of the total environment, 87, 439–461.

    Article  Google Scholar 

Download references

Acknowledgments

Technical support was provided by the Haisla First Nation Fisheries Commission (Michael Jacobs, Brenda Bouzane, Trevor Amos, Rachael Franz, and others; Kitamaat Village, BC) and by Hidden River Environmental Management Ltd. (Mitch Drewes, Olivia Gray, Bobbi Vojtko, and others; Terrace, BC). Access to field and laboratory equipment and facilities and advice was provided by staff at the Cultus Lake Salmon Research Laboratory (Glenn Block, Kelly Malange, Garrett Lidin, Lucas Pon, Steve McDonald, David Patterson, Erland MacIsaac, and others; DFO; Cultus Lake, BC), the Kitimat River Salmon Hatchery (Markus Feldhoff, Vince Sealy, Gord Fossl, Stephen Leask, Shaun Barbosa, and others; DFO; Kitimat, BC), and the BC Ministry of Environment (BC MOE; Patrick Williston; Smithers, BC). Background data were provided by Rio Tinto Alcan and BC MOE contained in the reports by ESSA Technologies (2013, 2014). Two anonymous reviewers provided valuable insights on the manuscript.

Funding

Funding was provided by the Haisla Nation Council (Kitamaat Village, BC), Fisheries and Oceans Canada (DFO; Vancouver, BC), the Mitacs Elevate postdoctoral fellowship program (RPW), and the Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant program (SOCM).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Maguire.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest or competing interests to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 23.3 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maguire, T.J., Weidman, R.P., Mundle, S.O.C. et al. Impacts of industrial atmospheric emissions on watershed export of dissolved ions in coastal streams: a Bayesian modeling approach. Environ Monit Assess 192, 568 (2020). https://doi.org/10.1007/s10661-020-08493-x

Download citation

Keywords

  • Watersheds
  • Streams
  • Atmospheric deposition
  • Sulfur
  • Nitrogen
  • Calcium
  • Salmon