Skip to main content
Log in

To composite or replicate: how sampling method and protocol differences alter collected stream invertebrates and associated bioassessment metrics

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Aquatic invertebrates are excellent indicators of ecosystem quality; however, choosing a sampling method can be difficult. Each method and associated protocol has advantages and disadvantages, and finding the approach that minimizes biases yet fulfills management objectives is crucial. To test the effects of both sampling methods and sample handling—i.e., to composite samples or leave them as replicates—we collected aquatic invertebrates from the Niobrara River at Agate Fossil Beds National Monument, Nebraska, using three methods and two sample handling protocols. We compared aquatic invertebrate assemblages collected with a Hester-Dendy multi-plate sampler, Hess sampler, and a D-frame dipnet. We calculated six common bioassessment metrics from composite (combined) and replicate (separate) samples. Hess samples contained the highest taxonomic richness (capturing 77% of all taxa observed) and dipnet samples the least (47%). Hester-Dendy samples had the greatest proportion of Ephemeroptera, and Ephemeroptera, Plecoptera, and Trichoptera (EPT). Dipnet samples had the lowest evenness values. In terms of sample handling, composite samples had inflated richness, diversity, and evenness compared with replicate samples, but bioassessment metrics calculated from proportions or averages (i.e., Hilsenhoff’s Biotic Index and the proportion of EPT taxa) did not differ between them. The proportion of invertebrate groups from composite samples were not statistically different among sampling methods, but several groups differed between replicate samples collected by different methods. Ultimately, we recommend collecting replicate samples with a Hess sampler when the goal of the study is to detect ecosystem change, among locations or differences in variables of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish. Washington, D.C.: U.S. Environmental Protection Agency.

    Google Scholar 

  • Bates, D., & Maechler, M. (2013). Matrix: sparse and dense matrix classes and methods. R package version 1.0-12.

  • Battle, J. M., Jackson, J. K., & Sweeney, B. W. (2007). Mesh size affects macroinvertebrate descriptions in large rivers: Examples from the Savannah and Mississippi Rivers. Hydrobiologia, 592, 329–343. https://doi.org/10.1007/s10750-007-0771-x.

    Article  Google Scholar 

  • Bouchard, R. W., Genet, J. A., & Chirhart, J. W. (2014). Does supplementing dipnet samples with activity traps improve the ability to assess the biological integrity of macroinvertebrate communities in depressional wetlands? Wetlands, 34(4), 699–711. https://doi.org/10.1007/s13157-014-0535-0.

    Article  Google Scholar 

  • Bradley, D. C., & Ormerod, S. J. (2002). Evaluating the precision of kick-sampling in upland streams for assessments of long-term change: The effects of sampling effort, habitat and rarity. Archiv Fur Hydrobiologie, 155(2), 199–221.

    Article  Google Scholar 

  • Buss, D. F., & Borges, E. L. (2008). Application of Rapid Bioassessment Protocols (RBP) for benthic macroinvertebrates in Brazil: Comparison between sampling techniques and mesh sizes. Neotropical Entomology, 37(3), 288–295. https://doi.org/10.1590/s1519-566x2008000300007.

    Article  Google Scholar 

  • Cairns, J., & Pratt, J. R. (1993). A history of biological monitoring using benthic macroinvertebrates. In D. M. Rosenberg & V. H. Resh (Eds.), Freshwater biomonitoring and bBenthic macroinvertebrates (pp. 10–27). New York, NY: Chapman and Hall.

    Google Scholar 

  • Canton, S. P., & Chadwick, J. W. (1983). Aquatic insect communities of natural and artificial substrates in a montane stream. Journal of Freshwater Ecology, 2(2), 153–158.

    Article  Google Scholar 

  • Carey, J., & Keough, M. (2002). The variability of estimates of variance, and its effect on power analysis in monitoring design. Environmental Monitoring and Assessment, 74(3), 225–241.

    Article  Google Scholar 

  • Carter, J. L., & Resh, V. H. (2001). After site selection and before data analysis: Sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. Journal of the North American Benthological Society, 20(4), 658–682.

    Article  Google Scholar 

  • Davies, G. M., & Gray, A. (2015). Don’t let spurious accusations of pseudoreplication limit our ability to learn from natural experiments (and other messy kinds of ecological monitoring). Ecology and Evolution, 5, 5295–5304.

    Article  Google Scholar 

  • De Pauw, N., Roels, D., & Fontoura, A. P. (1986). Use of artificial substrates for standardized sampling of macroinvertebrates in the assessment of water-quality by the Belgian Biotic Index. Hydrobiologia, 133(3), 237–258.

    Article  Google Scholar 

  • DiFranco, J. L. (2014). Protocols for sampling aquatic macroinvertebrates in freshwater wetlands. Maine Department of Environmental Protection, Portland, Maine, DEPLW0640A-2014.

  • Downes, B. J. (2010). Back to the future: Little-used tools and principles of scientific inference can help disentangle effects of multiple stressors on freshwater ecosystems. Freshwater Biology, 55(Supplement 1), 60–79.

    Article  Google Scholar 

  • Galat, D. L., Berry, C. R., Peters, E. J., & White, R. G. (2005). Missouri River Basin. In A. C. Benke & C. E. Cushing (Eds.), Rivers of North America (pp. 427–480). New York, NY: Elsevier.

    Google Scholar 

  • Gillies, C. L., Hose, G. C., & Turak, E. (2009). What do qualitative rapid assessment collections of macroinvertebrates represent? A comparison with extensive quantitative sampling. Environmental Monitoring and Assessment, 149, 99–112.

    Article  CAS  Google Scholar 

  • Hamilton, N. (2015). ggtern: An extension to ggplot2, for the creation of ternary Diagrams. (R package version, 1 ed.).

  • Hawkins, C. P., Norris, R. H., Hogue, J. N., & Feminella, J. W. (2000). Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications, 10, 1456–1477.

    Article  Google Scholar 

  • Hering, D., Moog, O., Sandin, L., & Verdonschot, P. F. M. (2004). Overview and application of the AQEM assessment system. Hydrobiologia, 516, 1–20.

    Article  Google Scholar 

  • Hilsenhoff, W. L. (1987). An improved biotic index of organic stream pollution. Great Lakes Entomologist, 20, 31–39.

    Google Scholar 

  • Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187–211.

    Article  Google Scholar 

  • Johnson, R. K., Wiederholm, T., & Rosenberg, D. M. (1993). Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In D. M. Rosenberg & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 40–158). New York: Chapman and Hall.

    Google Scholar 

  • Jones, F. C. (2008). Taxonomic sufficiency: The influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews, 16, 45–69. https://doi.org/10.1139/a07-010.

    Article  Google Scholar 

  • Kerans, B. L., & Karr, J. R. (1994). A bethic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecological Applications, 4, 768–785.

    Article  Google Scholar 

  • King, R. S., & Richardson, C. J. (2002). Evaluating subsampling approaches and macro invertebrate taxonomic resolution for wetland bioassessment. Journal of the North American Benthological Society, 21(1), 150–171. https://doi.org/10.2307/1468306.

    Article  Google Scholar 

  • Lazorchak, J. M., Klemm, D. J., & Peck, D. V. (1998). Environmental monitoring and assessment program-surface waters: Field operations and methods for measuring the ecological condition of wadeable streams. US Environmental Protection Agency Report EPA/620/R-94/004F.

  • Legendre, P., & Legendre, L. (1998). Numerical Ecology. Amsterdam: Elsevier Science.

    Google Scholar 

  • Letovsky, E., Myers, I. E., Canepa, A., & McCabe, D. J. (2012). Differences between kick sampling techniques and short-term Hester-Dendy sampling for stream macroinvertebrates. Bios, 83(2), 47–55.

    Article  Google Scholar 

  • Macanowics, N., Boeing, W. J., & Gould, W. R. (2013). Evaluation of methods to assess benthic biodiversity of desert sinkholes. Freshwater Science, 32(4), 1101–1110.

    Article  Google Scholar 

  • McCabe, D. J., Hayes-Pontius, E. M., Canepa, A., Berry, K. S., & Levine, B. C. (2012). Measuring standardized effect size improves interpretation of biomonitoring studies and facilitates meta-analysis. Freshwater Science, 31(3), 800–812.

    Article  Google Scholar 

  • Merritt, R. W., Cummins, K. W., & Berg, M. B. (Eds.). (2008). An Introduction to the Aquatic Insects of North America (4th ed.). Dubuque, IA: Kendall Hunt Publishing.

    Google Scholar 

  • Mondy, C. P., Villeneuve, B., Archaimbault, V., & Usseglio-Polatera, P. (2012). A new macroinvertebrate-based multimetric index (I2M2) to evaluate ecological quality of French wadeable streams fulfilling the WFD demands: A taxonomical and trait approach. Ecological Indicators, 18, 452–467.

    Article  Google Scholar 

  • Nichols, S. J., & Norris, R. H. (2006). River condition assessment may depend on the sub-sampling method: field live-sort versus laboratory sub-sampling of invertebrates for bioassessment. Hydrobiologia, 572, 195–213. https://doi.org/10.1007/s10750-006-0253-6.

    Article  Google Scholar 

  • O’Connor, A. O., Bradish, S., Reed, T. E., Moran, J., Regan, E. C., Visser, M., et al. (2004). A comparison of the efficacy of pond-net and box sampling methods in Turloughs – Irish Ephemeral Aquatic Systems. Hydrobiologia, 524(1), 133–144.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., et al. (2013). Vegan: Community Ecologye Package.

  • Pallottini, M., Cappelletti, D., Fabrizi, E., Gaino, E., Goretti, E., Selvaggi, R., & Céréghino, R. (2017a). Macroinvertebrate functional trait responses to chemical pollution in agricultural-industrial landscapes. River Research and Applications, 33, 505–513.

    Article  Google Scholar 

  • Pallottini, M., Goretti, E., Selvaggi, R., Cappelletti, D., Dedieu, N., & Cereghino, R. (2017b). An efficient semi-quantitative macroinvertebrate multimetric index for the assessment of water and sediment contamination in streams. Inland Waters, 7, 314–322.

    Article  CAS  Google Scholar 

  • Quinn, G., & Keough, M. (2002). Experimental design and data analysis for biologist. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • R Core DevelopmentTeam. (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Rosenberg, D. M., & Resh, V. H. (1993a). Introduction to freshwater biomonitoring and benthic macroinvertebrates. In D. M. Rosenberg & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 1–9). New York: Chapman and Hall.

    Google Scholar 

  • Rosenberg, D. M., & Resh, V. H. (Eds.). (1993b). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman and Hall.

    Google Scholar 

  • Slavik, K., Peterson, B. J., Deegan, L. A., Bowden, W. B., Hershey, A. E., & Hobbie, J. E. (2004). Long-term responses of the Kuparuk River Ecosystem to phosphorus fertilization. Ecology, 85(4), 939–954.

    Article  Google Scholar 

  • Smith, D. G. (2001). Pennak’s freshwater invertebrates of the United States (4th ed.). New York: John Wiley and Sons, Inc..

    Google Scholar 

  • Spurgeon, J. J., Stasiak, R. H., Cunningham, G. R., Pope, K. L., & Pegg, M. A. (2014). Status of native fishes withing selected protected areas of the Niobrara River in western Nebraska. Great Plains Research, 24, 71–78.

    Article  Google Scholar 

  • Thien, S. (1979). A flow diagram for teaching texture by feel analysis. Journal of Agronomic Education, 8, 54–55.

    Article  Google Scholar 

  • Thorp, J. H., & Covich, A. P. (Eds.). (2010). Ecology and Classification of North American Freshwater Invertebrates (3rd ed.). New York: Elsevier.

    Google Scholar 

  • Tronstad, L. M., & Hotaling, S. (2017). Long-term trends in aquatic ecosystem bioassessment metrics are not influences by sampling method: Empirical evidence from the Niobrara River. Knowledge and Managment of Aquatic Ecosystems, 418(28). https://doi.org/10.1051/kmae/2017020.

  • Turner, A. M., & Trexler, J. C. (1997). Sampling aquatic invertebrates from marshes: Evaluating the options. Journal of the North American Benthological Society, 16(3), 694–709. https://doi.org/10.2307/1468154.

    Article  Google Scholar 

  • US Environmental Protection Agency. (2013). National rivers and streams assessment 2013-2014: fIeld operations manual-wadeable. (pp. 177). Washington DC: United States Environmental Protection Agency, Office of Water.

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

    Article  Google Scholar 

  • Vinson, M., & Hawkins, C. P. (1996). Effects of sampling area and subsampling procedure on comparisons of taxa richness among streams. Journal of the North American Benthological Society, 15(3), 392–399.

    Article  Google Scholar 

  • Vlek, H. E., Sporka, F., & Krno, I. (2006). Influence of macroinvertebrate sample size on bioassessment of streams. Hydrobiologia, 566, 523–542.

    Article  Google Scholar 

  • Waters, T. F. (1969). Subsampler for dividing large samples of stream invertebrate drift. Limnology and Oceanography, 14(5), 813–815.

    Article  Google Scholar 

  • Wickham, H. (2011). The Split-Apply_Combine Strategy for Data Analysis. Journal of Statistical Software, 40, 1–29.

    Google Scholar 

Download references

Acknowledgments

We thank Katrina Cook, Linda Cooper, Isaac Dority, Heather Hicks, Ariele Johnson, Alexis Lester, Tresize Tronstad, and Sarah Wannemuehler for field and laboratory assistance. Robert Manasek and James Hill of the National Park Service provided logistical and field support, as well as the opportunity to work at Agate Fossil Beds National Monument. The project was supported by the National Park Service. Discussions with Brett Marshall were helpful in developing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lusha Tronstad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary materials

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tronstad, L., Wilmot, O., Thornbrugh, D. et al. To composite or replicate: how sampling method and protocol differences alter collected stream invertebrates and associated bioassessment metrics. Environ Monit Assess 192, 531 (2020). https://doi.org/10.1007/s10661-020-08489-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08489-7

Keywords

Navigation