Coastline variability of several Latin American cities alongside Pacific Ocean due to the unusual “Sea Swell” events of 2015


This study aims to report the short-term coastline dynamics and inundation limits of coastal cities along the Eastern Pacific due to the sea swell events that occurred during April to May 2015. The multi-temporal satellite datasets from Landsat such as Enhanced Thematic Mapper (L7 ETM+) and Operational Land Imager/Thermal Infrared Sensor (L8 OLI/TIRS) of different periods before and after the swell events were used to identify the shoreline changes. The satellite images were pre-processed using ERDAS imagine 9.2, and the coastline was digitized in ArcGIS 10.4.1 for ten cities spread across from Mexico to Chile (in Pacific coast) using the spectral water indices, and the shoreline change rate and erosion/accretion pattern at each transect were estimated using the statistical parameters embedded in Digital Shoreline Analysis System (DSAS). The maximum erosion and accretion were observed in El Salvador (268 m) and Huatulco (Mexico) (115 m), respectively. Likewise, the maximum inundation was observed in El Salvador with 268 m and Acapulco (Mexico) with 254 m, and the tide gauge data suggest a possible relation to the bathymetry and the geomorphological conditions of the coast. Overall, the results indicate that the Eastern Pacific Ocean side sea swell events has led to extreme coastal flooding in recent years due to the increase in the mean sea level and the unpredictable variation in El Niño/Southern Oscillation events.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Accumulated Cyclone Energy


Centro Nacional de Prevención de Desastres (National Center for Disaster Prevention)


Comisión Nacional del Agua, Mexico (National Water Commission)


Digital Shoreline Analysis System


El Niño Southern Oscillation


Environmental System Research Institute


Geographical Information System


Landsat Enhanced Thematic Mapper


Latin American countries


Modified Normalized Difference Water Index




Net Shoreline Movement


Oficina Nacional de Emergencia del Ministerio del Interior y Seguridad Publica, Chile (National Emergency Office of the Ministry of Interior)


Shoreline Change Envelope


Sea level rise


Servicio Meteorológico Nacional, Mexico (National Meteorological Service)


Sea swell events


Technology Planning and Management Corporation


United State Geological Survey


  1. Álvarez-Gómez, J. A., Aniel-Quiroga, Í., Gutiérrez-Gutiérrez, O. Q., Larreynaga, J., González, M., Castro, M., Gavidia, F., Aguirre-Ayerbe, I., González-Riancho, P., & Carreño, E. (2013). Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models. Natural Hazards and Earth System Sciences, 13(11), 2927–2939.

    Article  Google Scholar 

  2. Becker, M., Karpytchev, M., & Papa, F. (2019). Hotspots of relative sea level rise in the tropics. Tropical Extremes: Natural Variability and Trends, 7, 203–262.

    Article  Google Scholar 

  3. Brakenridge, G. R., Syvitski, J. P. M., Overeem, I., Higgins, S. A., Kettner, A. J., Stewart-Moore, J. A., & Westerhoff, R. (2013). Global mapping of storm surges and the assessment of coastal vulnerability. Natural Hazards, 66, 1295–1312.

    Article  Google Scholar 

  4. de Farias, E. G. G., Lorenzzetti, J. A., & Chapron, B. (2012). Swell and wind-sea distributions over the mid-latitude and tropical North Atlantic for the period 2002–2008. International Journal of Ocean, 306723, 8.

    Google Scholar 

  5. Delgado-Serrano, M. del M., Mistry, J., Matzdorf, B., & Leclerc, G. (2017). Community-based management of environmental challenges in Latin America and the Caribbean. Ecology and Society, 22(1).

  6. Dereli, M. A., & Tercan, E. (2020). Assessment of shoreline changes using historical satellite images and geospatial analysis along the Lake Salda in Turkey. Earth Science Informatics.

  7. Foody, G. M. (2000). Estimation of sub-pixel land cover composition in the presence of untrained classes. Computational Geosciences, 26(4), 469–478.

  8. Halabisky, M., Moskal, L. M., Gillespie, A., & Hannam, M. (2016). Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984–2011). Remote Sensing of Environment, 177, 171–183.

    Article  Google Scholar 

  9. Hamlington, B. D., Cheon, S. H., Thompson, P. R., Merrifield, M. A., Nerem, R. S., Leben, R. R., & Kim, K.-Y. (2016). An ongoing shift in Pacific Ocean sea level. Journal of Geophysical Research, Oceans, 121, 5084–5097.

    Article  Google Scholar 

  10. Himmelstoss EA, Henderson RE, Kratzmann MG, Farris AS (2018) Digital Shoreline Analysis System (DSAS) version 5.0 user guide: U.S. Geological Survey Open-File Report 2018–1179: 110 p.

  11. Hoeke, R. K., McInnes, K., Kruger, J., McNaught, R., Hunter, J., & Smithers, S. G. (2013). Widespread inundation of Pacific Islands by distant-source wind-waves. Global and Planetary Change, 108, 1–11.

    Article  Google Scholar 

  12. Hu, S., & Fedorov, A. V. (2016). Exceptionally strong easterly wind burst stalling El Niño of 2014. Proceedings of the National Academy of Sciences, 113(8), 2005–2010.

    Article  CAS  Google Scholar 

  13. Jeihouni, M., Kakroodi, A. A., & Hamzeh, S. (2019). Monitoring shallow coastal environment using Landsat/altimetry data under rapid sea-level change. Estuarine, Coastal and Shelf Science, 224, 260–271.

    Article  Google Scholar 

  14. Jiang, H., & Chen, G. (2013). A global view on the swell and wind sea climate by the Jason-1 Mission. A Revisit. Journal of Atmospheric and Oceanic Technology, 30, 1833–1841.

    Article  Google Scholar 

  15. Kelly, J. T., & Gontz, A. M. (2018). Using GPS-surveyed intertidal zones to determine the validity of shorelines automatically mapped by Landsat water indices. International Journal of Applied Earth Observation and Geoinformation, 65, 92–104.

    Article  Google Scholar 

  16. Lyddon, C. E., Brown, J. M., Leonardi, N., & Plater, A. J. (2019). Increased coastal wave hazard generated by differential wind and wave direction in hyper-tidal estuaries. Estuarine, Coastal and Shelf Science, 220, 131–141.

    Article  Google Scholar 

  17. Martin, J. A., Carreras, D., Pons, G. X., & Almaraz, A. (2020). Shoreline historical evolution (1956-2015) of beaches of enorca (Balearic Islands). In G. Malvarez & F. Navas (Eds.), Global coastal issues of 2020, J Coast Res (Vol. 95, pp. 563–567).

    Google Scholar 

  18. Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., & Ward, P. J. (2016). A global reanalysis of storm surge and extreme sea levels. Nature Communications, 7(11969), 1–11.

    Google Scholar 

  19. NOAA National Centers for Environmental Information, State of the Climate: Hurricanes and Tropical Storms for Annual 2015, published online January 2016, retrieved on May 16, 2019 from Https://Www.Ncdc.Noaa.Gov/Sotc/Tropical-Cyclones/201513.

  20. Olthof, I., Fraser, R. H., & Schmitt, C. (2015). Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sensing of Environment, 168, 194–204.

    Article  Google Scholar 

  21. Páez-Osuna, F., Sanchez-Cabeza, J. A., Ruiz-Fernández, A. C., Alonso-Rodríguez, R., Piñón-Gimate, A., Cardoso-Mohedano, J. G., Flores-Verdugo, F. J., Carballo-Cenizo, J. L., Cisneros-Mata, M. A., & Álvarez-Borrego, S. (2016). Environmental status of the Gulf of California: a review of responses to climate change and climate variability. Earth-Science Reviews, 162, 253–268.

    Article  Google Scholar 

  22. Palmer, K., Watson, C., & Fischer, A. (2019). Non-linear interactions between sea-level rise, tides, and geomorphic change in the Tamar Estuary, Australia. Estuarine, Coastal and Shelf Science, 225, 106247.

    Article  Google Scholar 

  23. Reguero, B. G., Losada, I. J., Díaz-Simal, P., Méndez, F. J., & Beck, M. W. (2015). Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS One, 10, 1–19.

    Article  CAS  Google Scholar 

  24. Rojas, O., Mardones, M., Rojas, C., Martínez, C., Flores, L., & Aguayo, M. (2017). Urban growth and flood disasters in the coastal river basin of South-Central Chile (1943-2011). Sustainability, 9(2), 195.

    Article  Google Scholar 

  25. Scott, A. S., & Ramsay, D. L. (2014). Extreme cyclone wave climate in the Southwest Pacific Ocean: influence of the El Niño Southern Oscillation and projected climate change. Global and Planetary Change, 123(A), 13–26.

    Google Scholar 

  26. Sheik, M., & Chandrasekar. (2011). A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system. Geo-spatial Information Science, 14(4), 282–293.

    Article  Google Scholar 

  27. Sweet, W. V., Park, J., Gill, S., & Marra, J. (2015). New ways to measure waves and their effects at NOAA tide gauges: a Hawaiian -network perspective. Geophysical Research Letters, 42, 9355–9361.

    Article  Google Scholar 

  28. Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., & Storlazzi, C. D. (2017). Doubling of coastal flooding frequency within decades due to sea-level rise. Scientific Reports, 7, 1–9.

    Article  CAS  Google Scholar 

  29. Wang, X., Liu, Y., Ling, F., & Xu, S. (2018). Fine spatial resolution coastline extraction from Landsat-8 OLI imagery by integrating downscaling and pan sharpening approaches. Remote Sensing Letters, 9(4), 314–323.

    Article  Google Scholar 

  30. Wdowinski, S., Bray, R., Kirtman, B., & Wu, Z. (2016). Increasing flooding hazard in coastal communities due to rising sea level: case study of Miami Beach, Florida. Ocean and Coastal Management, 126, 1–8.

    Article  Google Scholar 

  31. Wong PP, Losada IJ, Gattuso JP, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A, Cheong SM, Dow K, Duarte CM, Ebi KL, Faulkner L, Isobe M, Middel-burg J, Moser S, Pelling M, Penning-Rowsell E, Seitzinger S, Stive M, Tol RSJ, Vafeidis A (2014) Coastal systems and low-lying areas, climate change 2014: impacts, adaptation and vulnerability. In Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TB, Chatterjee M, Ebi KL, Estrada YO, Gen-ova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds). Global and sectoral aspects: working group contribution to the fifth assessment report of the inter-governmental panel on climate change. Cambridge, UK and New York, USA. 361–409.

  32. Xavier, C.-C., Cecilia, E., Vanesa, P., Ismael, M.-T., & Cristóbal, R.-H. (2019). Pacific coast of Mexico. World Seas: an Environmental Evaluation, 28, 655–671.

    Google Scholar 

  33. Yu, L., Wu, X., Zheng, X., Zheng, T., Xin, J., & Walther, M. (2019). An index system constructed for ecological stress assessment of the coastal zone: a case study of Shandong, China. Journal of Environmental Management, 232, 499–504.

    Article  Google Scholar 

  34. Zuniga, E., & Magaña, V. (2018). Vulnerability and risk to intense rainfall in Mexico: the effect of land use cover change. Investment Geo, 95.

Download references


MPJ thank the Sistema Nacional de Investigadores (SNI), CONACyT, Mexico. PGP and FRH thank CONACyT for the research fellowship. Thanks to Dr. V.C. Shruti for her initial idea in this work. This article is the 110th contribution (partial) from the Earth System Science Group (ESSG), Chennai, India (participating members: PGP, JMP, GM, CL).

Author information



Corresponding author

Correspondence to M. P. Jonathan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Video 1

Video clipping of inundation limits in Oaxaca and Guerrero (MP4 10161kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Godwyn-Paulson, P., Jonathan, M.P., Hernandez, F.R. et al. Coastline variability of several Latin American cities alongside Pacific Ocean due to the unusual “Sea Swell” events of 2015. Environ Monit Assess 192, 522 (2020).

Download citation


  • Sea swell 2015
  • Coastal cities
  • Inundation
  • El Niño/Southern Oscillation
  • DSAS
  • Latin American countries