Skip to main content

Advertisement

Log in

Interaction effects of the main drivers of global climate change on spatiotemporal dynamics of high altitude ecosystem behaviors: process-based modeling

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil organic carbon and nitrogen (SOC-N) dynamics are indicative of the human-induced disturbances of the terrestrial ecosystems the quantification of which provides insights into interactions among drivers, pressures, states, impacts, and responses in a changing environment. In this study, a process-based model was developed to simulate the eight monthly outputs of net primary productivity (NPP), SOC-N pools, soil C:N ratio, soil respiration, total N emission, and sediment C-N transport effluxes for cropland, grassland, and forest on a hectare basis. The interaction effect of the climate change drivers of aridity, CO2 fertilization, land-use and land-cover change, and best management practices was simulated on high altitude ecosystems from 2018 to 2070. The best management practices were developed into a spatiotemporally composite index based on SOC-N stock saturation, 4/1000 initiative, and RUCLE-C factor. Our model predictions differed from the remotely sensed data in the range of − 64% (underestimation) for the cropland NPP to 142% (overestimation) for the grassland SOC pool as well as from the global mean values in the range of − 97% for the sediment C and N effluxes to 60% for the total N emission from the grassland. The interaction exerted the greatest negative impact on the monthly sediment N efflux, total N emission, and soil respiration from forest by − 90.5, − 82.7, and − 80.3% and the greatest positive impact on the monthly sediment C effluxes from cropland, grassland, and forest by 139.3, 137.1, and 133.3%, respectively, relative to the currently prevailing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ballabio, C., Lugato, E., Fernández-Ugalde, O., Orgiazzi, A., Jones, A., Borrelli, P., Montanarella, L., & Panagos, P. (2019). Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma, 355, 113912. https://doi.org/10.1016/j.geoderma.2019.113912.

    Article  CAS  Google Scholar 

  • Churkina, G., Zaehle, S., Hughes, J., Viovy, N., Chen, Y., Jung, M., Heumann, B. W., Ramankutty, N., Heimann, M., & Jones, C. (2010). Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe. Biogeosciences, 7(9), 2749–2764. https://doi.org/10.5194/bg-7-2749-2010.

    Article  CAS  Google Scholar 

  • Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Fosaa, A. M., Gould, W. A., Grétarsdóttir, J., Harte, J., Hermanutz, L., Hik, D. S., Hofgaard, A., Jarrad, F., Jónsdóttir, I. S., Keuper, F., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lang, S. I., Loewen, V., May, J. L., Mercado, J., Michelsen, A., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Pieper, S., Post, E., Rixen, C., Robinson, C. H., Schmidt, N. M., Shaver, G. R., Stenström, A., Tolvanen, A., Totland, Ø., Troxler, T., Wahren, C. H., Webber, P. J., Welker, J. M., & Wookey, P. A. (2012). Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecology Letters, 15, 164–175. https://doi.org/10.1111/j.1461-0248.2011.01716.x.

    Article  Google Scholar 

  • Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H., & Wallenstein, M. D. (2014). Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 20, 3256–3269. https://doi.org/10.1111/gcb.12568.

    Article  Google Scholar 

  • Evrendilek, F., & Wali, M. K. (2001). Modelling long-term C dynamics in croplands in the context of climate change: A case study from Ohio. Environmental Modelling & Software, 16(4), 361–375. https://doi.org/10.1016/S1364-8152(00)00089-X.

    Article  Google Scholar 

  • Goudriaan, J. (1992). Biosphere structure, carbon sequestering potential and the atmospheric 14C carbon record. Journal of Experimental Botany, 43, 1111–1119. https://doi.org/10.1093/jxb/43.8.1111.

    Article  Google Scholar 

  • Goudriaan, J., & Zadoks, J. C. (1995). Global climate change: Modelling the potential responses of agro-ecosystems with special reference to crop protection. Environmental Pollution, 87, 215–224. https://doi.org/10.1016/0269-7491(94)P2609-D.

    Article  CAS  Google Scholar 

  • Grace, P. R., Ladd, J. N., Robertson, G. P., & Gage, S. H. (2006). SOCRATES—A simple model for predicting long-term changes in soil organic carbon in terrestrial ecosystems. Soil Biology & Biochemistry, 38, 1172–1176. https://doi.org/10.1016/j.soilbio.2005.09.013.

    Article  CAS  Google Scholar 

  • He, X., Liang, J., Zeng, Y., & Li, X. (2019). The effects of interaction between climate change and land-use/ cover change on biodiversity-related ecosystems services. Global Challenges, 1800095. https://doi.org/10.1002/gch2.201800095,

  • Helliwell, R. C., Ferrier, R. C., & Kernan, M. R. (2001). Interaction of nitrogen deposition and land use on soil and water quality in Scotland: Issues of spatial variability and scale. Science of the Total Environment, 265, 51–63. https://doi.org/10.1016/S0048-9697(00)00649-5.

    Article  CAS  Google Scholar 

  • Kimball, B. A., Mauney, J. R., Nakayama, F. S., Idso, S. B. (1993). Effects of increasing atmospheric CO on vegetation. In J. Rozema, H. Lambers, S. C. Van de Geijn, M. L. Cambridge (Eds.), CO and biosphere. Advances in vegetation science, vol 14. Dordrecht: Springer.

  • Koven, C. D., Hugelius, G., Lawrence, D. M., & Wieder, W. R. (2017). Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature Climate Change, 7, 817–822. https://doi.org/10.1038/nclimate3421.

    Article  CAS  Google Scholar 

  • Lieth, H. (1975). Modelling the primary productivity of the world. In H. Lieth & R. H. Whittaker (Eds.), Primary productivity of the biosphere (pp. 237–263). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • O’Rourke, S. M., Angers, D. A., Holden, N. M., & McBratney, A. B. (2015). Soil organic carbon across scales. Global Change Biology, 21, 3561–3574. https://doi.org/10.1111/gcb.12959.

    Article  Google Scholar 

  • Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T., Menaut, J. C., Seastedt, T., Garcia Moya, E., Kamnalrut, A., & Kinyamario, J. I. (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7, 785–809. https://doi.org/10.1029/93GB02042.

    Article  CAS  Google Scholar 

  • Peters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig-Bonitz, M., Hemp, C., Kindeketa, W. J., Kühnel, A., Mayr, A. V., Mwangomo, E., Ngereza, C., Njovu, H. K., Otte, I., Pabst, H., Renner, M., Röder, J., Rutten, G., Schellenberger Costa, D., Sierra-Cornejo, N., Vollstädt, M. G. R., Dulle, H. I., Eardley, C. D., Howell, K. M., Keller, A., Peters, R. S., Ssymank, A., Kakengi, V., Zhang, J., Bogner, C., Böhning-Gaese, K., Brandl, R., Hertel, D., Huwe, B., Kiese, R., Kleyer, M., Kuzyakov, Y., Nauss, T., Schleuning, M., Tschapka, M., Fischer, M., & Steffan-Dewenter, I. (2019). Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568, 88–92. https://doi.org/10.1038/s41586-019-1048-z.

    Article  CAS  Google Scholar 

  • Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G., Ciais, P., Friedlingstein, P., & Sitch, S. (2020). Interannual variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 26(1), 300–318. https://doi.org/10.1111/gcb.14884.

    Article  Google Scholar 

  • Raich, J. W., & Tufekcioglu, A. (2000). Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48, 71–90. https://doi.org/10.1023/A:1006112000616.

    Article  CAS  Google Scholar 

  • Shirato, Y. (2017). Calculating changes in soil organic carbon in Japanese agricultural land by IPCC-tier 3 modeling approach: Use of modified Rothamsted carbon model. In proceedings of the global symposium on soil organic carbon (pp. 177).

  • Stehfest, E. (2005). Modelling of global crop production and resulting N2O emissions. Dissertation, Universitaet Kassel, Kassel, Germany.

  • Stehfest, E., van Zeist, W., Valin, H., Havlik, P., Popp, A., Kyle, P., et al. (2019). Key determinants of global land-use projections. Nature Communications, 10, 2166. https://doi.org/10.1038/s41467-019-09945-w.

    Article  CAS  Google Scholar 

  • Trabucco, A., & Zomer, R. (2019). Global aridity index and potential evapotranspiration (ET0) climate database v2. Figshare. Dataset: https://figshare.com/articles/Global_Aridity_Index_and_Potential_Evapotranspiration_ET0_Climate_Database_v2/7504448/3

  • Vanmaercke, M., Poesen, J., Verstraeten, G., de Vente, J., & Ocakoglu, F. (2011). Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology, 130(3–4), 142–161. https://doi.org/10.1016/j.geomorph.2011.03.010.

    Article  Google Scholar 

  • Watt, M. S., & Palmer, D. J. (2012). Use of regression kriging to develop a carbon: Nitrogen ratio surface for New Zealand. Geoderma, 183, 49–57. https://doi.org/10.1016/j.geoderma.2012.03.013.

    Article  CAS  Google Scholar 

  • Xiong, X., Grunwald, S., Myers, D. B., Ross, C. W., Harris, W. G., & Comerford, N. B. (2014). Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Science of the Total Environment, 493, 974–982. https://doi.org/10.1016/j.scitotenv.2014.06.088.

    Article  CAS  Google Scholar 

  • Yin, R., Eisenhauer, N., Schmidt, A., Gruss, I., Purahong, W., Siebert, J., & Schädler, M. (2019). Climate change does not alter land-use effects on soil fauna communities. Applied Soil Ecology, 140, 1–10. https://doi.org/10.1016/j.apsoil.2019.03.026.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Haluk Fidan and Ceren Bozkurt for their help with the analysis of soil samples in laboratory.

Funding

This research was funded by the Turkish Scientific and Technological Research Council (TUBITAK) under the Grant number: 117Y193.

Author information

Authors and Affiliations

Authors

Contributions

This article is extracted from Kadir Yildiz’s MSc thesis. Nusret Karakaya and Fatih Evrendilek were co-supervisors for his MSc thesis and responsible for conceptualization, securing the TUBITAK funding, and drafting the article. Seref Kilic was responsible for soil sampling, analysis and mapping.

Corresponding author

Correspondence to Fatih Evrendilek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, K., Karakaya, N., Kilic, S. et al. Interaction effects of the main drivers of global climate change on spatiotemporal dynamics of high altitude ecosystem behaviors: process-based modeling. Environ Monit Assess 192, 457 (2020). https://doi.org/10.1007/s10661-020-08430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08430-y

Keywords

Navigation