Skip to main content

Spatial and temporal evaluation of soil erosion in Turkey under climate change scenarios using the Pan-European Soil Erosion Risk Assessment (PESERA) model

Abstract

The impacts of climate change on soil erosion are mainly caused by the changes in the amount and intensity of rainfall and rising temperature. The combination of rainfall and temperature change is likely to be accompanied by negative or positive variations in agricultural and forest management. Turkey contains vast fertile plains, high mountain chains and semi-arid lands, with a climate that ranges from marine to continental and therefore is susceptible to soil erosion under climate change, particularly on high gradients and in semi-arid areas. This study aims to model the soil erosion risk under climate change scenarios in Turkey using the Pan-European Soil Erosion Assessment (PESERA) model, predicting the likely effects of land use/cover and climate change on sediment transport and soil erosion in the country. For this purpose, PESERA was applied to estimate the monthly and annual soil loss for 12 land use/cover types in Turkey. The model inputs included 128 variables derived from soil, climate, land use/cover and topography data. The total soil loss from the land surface is speculated to be approximately 285.5 million tonnes per year. According to the IPCC 5th Assessment Report of four climate change scenarios, the total soil losses were predicted as 308.9, 323.5, 320.3 and 355.3 million tonnes for RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios respectively from 2060 to 2080. The predicted amounts of fertile soil loss from agricultural land in a year were predicted to be 55.5 million tonnes at present, and 62.7, 59.9, 61.7 and 58.1 under RCP2.6, RCP4.5, RCP6.0 and RCP8.5 respectively. This confirms that approximately 30% of the total erosion occurs over the agricultural lands. In this respect, degraded forests, scrub and arable lands were subjected to the highest erosion rate (68%) of the total, whereas, fruit trees and berry plantations reflected the lowest erosion rates. Low soil organic carbon, sparse vegetation cover and variable climatic conditions significantly enhanced the erosion of the cultivated lands by primarily removing the potential food for organisms. Finally, process-based models offer a valuable resource for decision-makers when improving environmental management schemes and also decrease uncertainty when considering risks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., & Rasmussen, J. (1986). An introduction to the European hydrological system — Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. Journal of Hydrology, 87, 61–77.

    Article  Google Scholar 

  • Akça, E., Aydin, M., Kapur, S., Kume, T., Nagano, T., Watanabe, T., Çilek, A., & Zorlu, K. (2020). Long-term monitoring of soil salinity in a semi-arid environment of Turkey. CATENA, 193, 104614. https://doi.org/10.1016/j.catena.2020.104614.

    Article  CAS  Google Scholar 

  • Amanambu, A. C., Li, L., Egbinola, C. N., Obarein, O. A., Mupenzi, C., & Chen, D. (2019). Spatio-temporal variation in rainfall-runoff erosivity due to climate change in the lower Niger Basin, West Africa. Catena, 172, 324–334. https://doi.org/10.1016/j.catena.2018.09.003.

    Article  Google Scholar 

  • Angima, S., Stott, D., O’Neill, M., et al. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems and Environment, 97, 295–308.

    Article  Google Scholar 

  • Arnhold, S., Lindner, S., Lee, B., Martin, E., Kettering, J., Nguyen, T. T., Koellner, T., Ok, Y. S., & Huwe, B. (2014). Conventional and organic farming: soil erosion and conservation potential for row crop cultivation. Geoderma, 219–220, 89–105. https://doi.org/10.1016/j.geoderma.2013.12.023.

    Article  Google Scholar 

  • Beasley, D., Huggins, L., & Monke, E. (1980). ANSWERS: A model for watershed planning. Transactions of ASAE, 23, 0938–0944.

    Article  Google Scholar 

  • Begum Nasir Ahmad, N. S., Mustafa, F. B., Yusoff, S.@. Y. M., & Gideon, D. (2020). A systematic review of soil erosion control practices on the agricultural land in Asia. International Soil and Water Conservation Research, 8, 103–115. https://doi.org/10.1016/j.iswcr.2020.04.001.

    Article  Google Scholar 

  • Beskow, S., Mello, C. R., Norton, L. D., Curi, N., Viola, M. R., & Avanzi, J. C. (2009). Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena, 79, 49–59. https://doi.org/10.1016/j.catena.2009.05.010.

    Article  Google Scholar 

  • Boardman, J., Favis-Mortlock, D. T. (2001). How will future climate change and land-use change affect rates of erosion on agricultural land? Soil Eros res 21st century, Proc 498–501.

  • Brazier, R., Rowan, J., Anthony, S., & Quinn, P. (2001). “MIRSED” towards an MIR approach to modelling hillslope soil erosion at the national scale. CATENA, 42, 59–79.

    Article  Google Scholar 

  • Cerdan, O., Desprats, J. F., Fouche, J., et al (2011). Impact of global changes on soil vulnerability in the Mediterranean Basin. In: International symposium on Erosion and landscape evolution. ASABE publication number 711P0311cd, Anchorage, Alaska, pp 1–8.

  • Cilek, A. (2017). Soil organic carbon losses by water erosion in a Mediterranean watershed. Soil Research, 55, 363.

    Article  Google Scholar 

  • Cilek, A., Berberoglu, S., Donmez, C., & Unal Cilek, M. (2020). Generation of high-resolution 3-D maps for landscape planning and design using UAV technologies. The Journal of Digital Landscape Architecture, 5, 275–284.

    Google Scholar 

  • CLC (2012). Corine Land Cover 2012. In: Copernicus data Inf. policy Regul. No 1159/2013 12 July 2013. https://www.eea.europa.eu/data-and-maps/data/external/corine-land-cover-2012. Accessed 20 Aug 2008.

  • Fernández, C., & Vega, J. A. (2016). Evaluation of RUSLE and PESERA models for predicting soil erosion losses in the first year after wildfire in NW Spain. Geoderma, 273, 64–72. https://doi.org/10.1016/j.geoderma.2016.03.016.

    Article  Google Scholar 

  • Finlayson, D. P., & Montgomery, D. R. (2003). Modeling large-scale fluvial erosion in geographic information systems. Geomorphology, 53, 147–164.

    Article  Google Scholar 

  • Fu, B. J., Zhao, W. W., Chen, L. D., Zhang, Q. J., Lü, Y. H., Gulinck, H., & Poesen, J. (2005). Assessment of soil erosion at large watershed scale using RUSLE and GIS: a case study in the Loess Plateau of China. Land Degradation Development, 16, 73–85.

    Article  Google Scholar 

  • Gallaher, R. N., Hawf, L. (1997). Role of conservation tillage in production of a wholesome food supply. In: Gallaher R. (ed) Proceedings of the 20th annual southern conservation tillage for sustainable agriculture. University of Florida, Gainesville, pp 23–27.

  • Gobin, A., Govers, G., Jones, R., et al (2003). Assessment and reporting on soil erosion. Background and workshop report. European Environment Agency 1–103.

  • Han, F., Ren, L., Zhang, X., & Li, Z. (2016). The WEPP model application in a small watershed in the Loess Plateau. PLoS One, 11, 1–11. https://doi.org/10.1371/journal.pone.0148445.

    Article  CAS  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). WORLDCLIM - a set of global climate layers (climate grids). International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • IPCC Climate Change. (2007). Climate Change 2007:The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on Climate Change. Cambridge and New York: Cambridge University Press.

    Book  Google Scholar 

  • Irvem, A., Topaloglu, F., & Uygur, V. (2007). Estimating spatial distribution of soil loss over Seyhan River basin in Turkey. Journal of Hydrology, 336, 30–37.

    Article  Google Scholar 

  • Kirkby, M. J., & Cox, N. J. (1995). A climatic index for soil erosion potential (CSEP) including seasonal and vegetation factors. Catena, 25, 333–352.

    Article  Google Scholar 

  • Kirkby, M. J., Neale, R. H. (1987). A soil erosion model incorporating seasonal factors. International Geomorphology, II, John Wiley.

  • Kirkby, M. J., Le Bissonais, Y., Coulthard, T. J., et al. (2000). The development of land quality indicators for soil degradation by water erosion. Agriculture, Ecosystems and Environment, 81, 125–136.

    Article  Google Scholar 

  • Kirkby, M. J., Gobin, A., Irvine, B. (2003) Pan European Soil Erosion Risk Assessment. Deliverable 5: PESERA model strategy, land use and vegetation growth.

  • Kirkby, M. J., Jones, R., Irvine, B., et al (2004). Pan-European Soil Erosion Risk Assessment: The PESERA Map, Version 1 October 2003b. Eur soil bur res report off off Publ Eur communities, Luxemb 16:18.

  • Kirkby, M. J., Irvine, B. J., Jones, R. J. A., Govers, G., & PESERA team. (2008). The PESERA coarse scale erosion model for Europe. I. - model rationale and implementation. European Journal of Soil Science, 59, 1293–1306.

    Article  Google Scholar 

  • Le Bissonnais, Y., Montier, C., Jamagne, M., et al. (2002). Mapping erosion risk for cultivated soil in France. Catena, 46, 207–220.

    Article  Google Scholar 

  • Li, P., Irvine, B., Holden, J., & Mu, X. (2017). Spatial variability of fluvial blanket peat erosion rates for the 21st century modelled using PESERA-PEAT. Catena, 150, 302–316. https://doi.org/10.1016/j.catena.2016.11.025.

    Article  Google Scholar 

  • Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modelling and Software, 18, 761–799.

    Article  Google Scholar 

  • Morgan, R. P., Quinton, J. N., Rickson, R. J. (1990). Structure of the soil erosion prediction model for the European community. In: Proceedings of international symposium on water Erosion, Sedimentation and Resource Conservation. Central Soil and Water Conservation Research and Training Institute, CSWCRTI, Dehradun, India, pp 49–59.

  • Munodawafa, A. (2007). Assessing nutrient losses with soil erosion under different tillage systems and their implications on water quality. Physics and Chemistry of the Earth, 32, 1135–1140. https://doi.org/10.1016/j.pce.2007.07.033.

    Article  Google Scholar 

  • Nazarenko, L., Schmidt, G. A., Miller, R. L., Tausnev, N., Kelley, M., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, S., Bleck, R., Canuto, V., Cheng, Y., Clune, T. L., del Genio, A. D., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande, A. N., Lerner, J., Lo, K. K., Menon, S., Oinas, V., Perlwitz, J., Puma, M. J., Rind, D., Romanou, A., Sato, M., Shindell, D. T., Sun, S., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M. S., & Zhang, J. (2015). Future climate change under RCP emission scenarios with GISS ModelE2. Journal of Advances in Modeling Earth Systems, 7, 244–267.

    Article  Google Scholar 

  • Nearing, M., Foster, G., Lane, L., & Finkner, S. (1989). A process-based soil erosion model for USDA-water erosion prediction project technology. Transactions of ASAE, 32, 1587–1593.

    Article  Google Scholar 

  • Nearing, M., Jetten, V., Baffaut, C., et al. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 61, 131–154.

    Article  Google Scholar 

  • Ochoa, P. A., Fries, A., Mejía, D., Burneo, J. I., Ruíz-Sinoga, J. D., & Cerdà, A. (2016). Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena, 140, 31–42. https://doi.org/10.1016/j.catena.2016.01.011.

    Article  Google Scholar 

  • Panagos, P., Hiederer, R., Van Liedekerke, M., Bampa, F. (2013). Review of the current situation based on data collected through a European network. Journal of Environmental and Public Health Artical ID:1–11. https://doi.org/10.1016/j.ecolind.2012.07.020.

  • Panagos, P., Karydas, C., Ballabio, C., & Gitas, I. (2014). Corrigendum to "Seasonal monitoring of soil erosion at regional scale: an application of the G2 model in Crete focusing on agricultural land uses " [Int. J. Appl. Earth Observ. Geoinform., 27, (2014), 147-155. International Journal of Applied Earth Observation and Geoinformation, 32, 240–240. https://doi.org/10.1016/j.jag.2014.04.022.

    Article  Google Scholar 

  • Renschler, C. S., & Harbor, J. (2002). Soil erosion assessment tools from point to regional scales—the role of geomorphologists in land management research and implementation. Geomorphology, 47, 189–209.

    Article  Google Scholar 

  • Rickson, R. J. (2014). Can control of soil erosion mitigate water pollution by sediments? The Science of the Total Environment, 468–469, 1187–1197. https://doi.org/10.1016/j.scitotenv.2013.05.057.

    Article  CAS  Google Scholar 

  • Russell, S. H., & William, W. (2001). Landscape erosion and evolution modeling. Boston: Springer US.

    Google Scholar 

  • Sacks, W. J., Deryng, D., Foley, J. A., Ramankutty, N. (2010). Crop planting dates: an analysis of global patterns. Global Ecology and Biogeography 19:No-no. https://doi.org/10.1111/j.1466-8238.2010.00551.x.

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 485–498.

    Article  Google Scholar 

  • Terranova, O., Antronico, L., Coscarelli, R., & Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology, 112, 228–245.

    Article  Google Scholar 

  • Trimble, S. W. (2000). LAND USE: U.S. soil erosion rates--myth and reality. Science (80- ), 289, 248–250.

    Article  CAS  Google Scholar 

  • TSMS (2012). Climate data, 1975–2012. Turkey: Regional Directorate of State Meteorological Service, Turkish State Meteorological Service. https://www.mgm.gov.tr/. Accessed 24 Aug 2018.

  • Unal, M., Uslu, C. (2018). Evaluating and optimizing urban green spaces for compact urban areas: Cukurova district in Adana, Turkey. ISPRS Internal Journal of Geo-Information 7:. https://doi.org/10.3390/ijgi7020070.

  • Unal, M., Uslu, C., Cilek, A., & Altunkasa, M. F. (2018). Microclimate analysis for street tree planting in hot and humid cities. Journal of Digital Landscape Architecture, 3, 34–42. https://doi.org/10.14627/537642004.

    Article  Google Scholar 

  • Uzuner, Ç., & Dengiz, O. (2020). Desertification risk assessment in Turkey based on environmentally sensitive areas. Ecological Indicators, 114, 106295. https://doi.org/10.1016/j.ecolind.2020.106295.

    Article  Google Scholar 

  • Vieira, D. C. S., Serpa, D., Nunes, J. P. C., Prats, S. A., Neves, R., & Keizer, J. J. (2018). Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models. Environmental Research, 165, 365–378. https://doi.org/10.1016/j.envres.2018.04.029.

    Article  CAS  Google Scholar 

  • Vinet, L., & Zhedanov, A. (2011). A “missing” family of classical orthogonal polynomials. Journal of Physics A: Mathematical and Theoretical, 44, 189–200. https://doi.org/10.1088/1751-8113/44/8/085201.

    Article  Google Scholar 

  • Wang, F., Li, R., & Yang, Q. K. (2003). Scaling in soil erosion research. Research of Soil and Water Conservation, 10, 9–12.

    CAS  Google Scholar 

  • Wicks, J. M., & Bathurst, J. C. (1996). SHESED: a physically based, distributed erosion and sediment yield component for the SHE hydrological modelling system. Journal of Hydrology, 175, 213–238.

    Article  Google Scholar 

  • Wuepper, D., Borrelli, P., & Finger, R. (2020). Countries and the global rate of soil erosion. Nature Sustainability, 3, 51–55.

    Article  Google Scholar 

  • Yang, D., Kanae, S., Oki, T., Koike, T., & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological Processes, 17, 2913–2928.

    Article  Google Scholar 

  • Zeng, C., Wang, S., Bai, X., Li, Y., Tian, Y., Li, Y., Wu, L., & Luo, G. (2017). Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth, 8, 721–736. https://doi.org/10.5194/se-8-721-2017.

    Article  Google Scholar 

  • Zhang, X., Drake, N., Wainwright, J. (2002). Scaling land surface parameters for global-scale soil erosion estimation. Water Resources Research 38:19-1-19–9.

  • Zobeck, T. M., Parker, N. C., Haskell, S., & Guoding, K. (2000). Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS. Agriculture, Ecosystems and Environment, 82, 247–259.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Scientific Projects Administration Unit of Cukurova University (Project ID: FBA-2019-10983) and the Scientific and Technological Research Council of Turkey (TUBITAK) (Project ID: 110Y338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Cilek.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berberoglu, S., Cilek, A., Kirkby, M. et al. Spatial and temporal evaluation of soil erosion in Turkey under climate change scenarios using the Pan-European Soil Erosion Risk Assessment (PESERA) model. Environ Monit Assess 192, 491 (2020). https://doi.org/10.1007/s10661-020-08429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08429-5

Keywords

  • Erosion
  • Climate change scenarios
  • Land use
  • Turkey
  • PESERA