Skip to main content

Advertisement

Log in

Tracking conservation effectiveness in the Vhembe Biosphere Reserve in South Africa using Landsat imagery

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Biosphere reserves (BRs) seek to reconcile a sustainable relationship between human welfare and environmental integrity by adopting a landscape model that distinguishes between three interdependent management zones (core, buffer, transition). Considering the increasing human influence on landscapes in BRs, the tracking land use–land cover (LULC) dynamics is crucial for the development and planning of efficient management strategies for specific management zone. This study aimed at (i) assessing biodiversity protection around the core zones to highlight the threats facing the core zones and (ii) tracking the effect of the proclamation of the Vhembe Biosphere Reserve (VBR) on the LULC dynamics in the management zones through spatio-temporal analysis using Landsat imagery acquired from1999 to 2018. Six LULC categories (water body, forest/bush, shrubs/grass, agricultural land, bare soil, and built-up/mines) were identified and mapped using the support vector machine (SVM) classification to address both objectives. Assessment of threats around the core zones using artificial buffers (0–5, 10–15, and 15–20 km radius) created around them showed agricultural activities in the most immediate buffers (0–5 km radius). The LULC dynamics showed vegetation increase in all the management zones evidenced by the reduction of bare soil as well shrub/grass lands, and by the corresponding increase in foliage-richer forest/bush lands since the proclamation of the reserve in 2009. The findings might signify a positive outcome of vegetation increase as a consequence of the proclamation of the VBR. However, firmer conservation measures must be adopted and priority must be given to the arrangement of the management zones to strengthen biodiversity protection in the core zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad, A., Kalsom, U., Mohd, O., Mawardy, M., Sakidin, H., Wahid, A., & Firdaus, S. (2018). Comparative analysis of support vector machine, maximum likelihood and neural network classification on multispectral remote sensing data. International Journal of Advanced Computer Science and Applications, 9(9), 529–537.

    Google Scholar 

  • Amposah-dacosta, F., & Mathada, H. (2017). Study of sand mining and related environmental problems along the Nzhelele River in Limpopo Province of South Africa. Finland: Mine Water and Circular Economy.

    Google Scholar 

  • Archer, E. R. M., Landman, W. A., Tadross, M. A., Malherbe, J., Weepener, H., Maluleke, P., & Marumbwa, F. M. (2017). Understanding the evolution of the 2014–2016 summer rainfall seasons in southern Africa: key lessons. Climate Risk Management, 16, 22–28.

    Google Scholar 

  • Bakali, M., Ligavha-Mbelengwa, M., Potgieter, M., & Tshisikhawe, M. (2017). Impact of ethnobotanical utilization on the population structure of androstachys johnsonii prain. in the Vhembe area of the Limpopo Province, South Africa. The Scientific Pages, 1(1), 50–56.

    Google Scholar 

  • Barkmann, J., Eichhorn, S., Maza, B., Walter, F., & Olschewski, R. (2013). The challenges of sustainable development in the Podocarpus-El Condor Biosphere Reserve. In J. Bendix, E. Beckr, A. Bräuning, F. Makeschin, R. Mosandl, S. Scheu, & W. Wilcke (Eds.), Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador, Vol. 221 (pp. 31–40). Berlin: Springer.

    Google Scholar 

  • Batisse, M. (1997). Biosphere reserves: a challenge for biodiversity conservation & regional development. Environment, 39, 6–33. https://doi.org/10.1080/00139159709603644.

    Article  Google Scholar 

  • Béliveau, M., Germain, D., & Ianăş, A. N. (2017). Fifty-year spatiotemporal analysis of landscape changes in the Mont Saint-Hilaire UNESCO Biosphere Reserve (Quebec, Canada). Environmental Monitoring and Assessment, 189(5), 1–14.

    Google Scholar 

  • Biswal, A., Jeyaram, A., Mukherjee, S., & Kumar, U. (2013). Ecological significance of core, buffer and transition boundaries in biosphere reserve: a remote sensing study in Similipal, Odisha, India. Computational Ecology and Software, 3(4), 126–137.

    Google Scholar 

  • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, 144–152. The Association for Computing Machinery.

  • Bridgewater, P. B. (2002). Biosphere reserves: special places for people and nature. Environmental Science and Policy, 5(1), 9–12.

    Google Scholar 

  • Buhrmann, R. D., Ramdhani, S., Pammenter, N. W., & Naidoo, S. (2016). Grasslands feeling the heat: the effects of elevated temperatures on a subtropical grassland. Bothalia, 46(2), 1–12.

    Google Scholar 

  • Cai, L., Shi, W., Miao, Z., & Hao, M. (2018). Accuracy assessment measures for object extraction from remote sensing images. Remote Sensing, 10(2), 1–14.

    Google Scholar 

  • Chowdhury, R. R. (2006). Landscape change in the Calakmul Biosphere Reserve, Mexico: modeling the driving forces of smallholder deforestation in land parcels. Applied Geography, 26(2), 129–152.

    Google Scholar 

  • Clerici, N., Bodini, A., Eva, H., Grégoire, J., Dulieu, D., & Paolini, C. (2007). Increased isolation of two biosphere reserves and surrounding protected areas (WAP ecological complex, West Africa). Journal for Nature Conservation, 15, 26–40.

    Google Scholar 

  • Coetzer, K. L., Erasmus, B. F. N., Witkowski, E. T. F., & Bachoo, A. K. (2010). Land-cover change in the Kruger to Canyons Biosphere Reserve (1993-2006): a first step towards creating a conservation plan for the subregion. South African Journal of Science, 106(7–8), 1–10.

    Google Scholar 

  • Coetzer, K. L., Erasmus, B. F. N., Witkowski, E. T. F., & Reyers, B. (2013). The race for space: Tracking land-cover transformation in a socio-ecological landscape, South Africa. Environmental Management, 52(3), 595–611.

    Google Scholar 

  • Coetzer, K. L., Witkowski, E. T. F., & Erasmus, B. F. N. (2014). Reviewing biosphere reserves globally: effective conservation action or bureaucratic label? Biological Reviews, 89(1), 82–104.

    Google Scholar 

  • Coetzer-Hanack, K. L., Witkowski, E. T. F., & Erasmus, B. F. N. (2016). Thresholds of change in a multi-use conservation landscape of South Africa: historical land-cover, future transformation and consequences for environmental decision-making. Environmental Conservation, 43(3), 253–262.

    Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.

    Google Scholar 

  • Corinna, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • De la Rosa-Velázquez, M. I., Espinoza-Tenorio, A., Díaz-Perera, M. Á., et al. (2017). Development stressors are stronger than protected area management: a case of the Pantanos de Centla Biosphere Reserve, Mexico. Land Use Policy, 67, 340–351.

    Google Scholar 

  • DeVries, B., Avitabile, V., Kooistra, L., & Herold, M. (2012). Monitoring the impact of REDD + implementation in the UNESCO Kafa Biosphere Reserve, Ethiopia. Sensing a Changing World, 1, 1–5.

    Google Scholar 

  • Dutta, K., Sudhakar Reddy, C., Sharma, S., & Jha, C. S. (2016). Quantification and monitoring of forest cover changes in Agasthyamalai Biosphere Reserve, Western Ghats, India (1920-2012). Current Science, 110(4), 508–520.

    Google Scholar 

  • Ekblom, A., Gillson, L., Risberg, J., Holmgren, K., & Chidoub, Z. (2012). Rainfall variability and vegetation dynamics of the lower Limpopo Valley, Southern Africa, 500 AD to present. Palaeogeography, Palaeoclimatology, Palaeoecology, 363, 69–78.

    Google Scholar 

  • Evans, S. W. (2017). An assessment of land cover change as a source of information for conservation planning in the Vhembe Biosphere Reserve. Applied Geography, 82, 35–47. https://doi.org/10.1016/j.apgeog.2017.02.014.

    Article  Google Scholar 

  • Flores-Casas, R., & Ortega-Huerta, M. A. (2019). Modelling land cover changes in the tropical dry forest surrounding the Chamela-Cuixmala biosphere reserve, Mexico. International Journal of Remote Sensing, 40(18), 6948–6974.

    Google Scholar 

  • Freire, S., Santos, T., Navarro, A., Soares, F., Silva, J. D., Afonso, N., Fonseca, A., & Tenedório, J. (2014). Introducing mapping standards in the quality assessment of buildings extracted from very high resolution satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 90, 1–9.

    Google Scholar 

  • Gambo, J., Mohd Shafri, H. Z., Shaharum, N. S. N., Abidin, F. A. Z., & Rahman, M. T. A. (2018). Monitoring and predicting land use-land cover (LULC) changes within and around Krau Wildlife Reserve (Kwr) protected area in Malaysia using multi-temporal Landsat data. Journal of Geomatics and Planning, 5(1), 17–34.

    Google Scholar 

  • García-Barrios, L., Cruz-Morales, J., Braasch, M., Dechnik-Vázquez, Y., Gutiérrez-Navarro, A., Meza-Jiménez, A., Rivera-Núñez, T., Speelman, E., Trujillo-Díaz, G., Valencia, V., & Zabala, A. (2020). Challenges for rural livelihoods, participatory agroforestry, and biodiversity conservation in a neotropical biosphere reserve in Mexico. In Participatory Biodiversity Conservation (pp. 69–89). Springer, Cham.

  • Gashaw, T., Tulu, T., Argaw, M., Worqlul, A. W., Tolessa, T., & Kindu, M. (2018). Estimating the impacts of land use/land cover changes on Ecosystem Service Values: the case of the Andassa watershed in the upper Blue Nile basin of Ethiopia. Ecosystem Services, 31, 219–228.

    Google Scholar 

  • Geoterraimage (2015). The 2013–14 South African National Land-cover dataset. Department of Environment, Forestry and Fisheries South Africa. https://www.environment.gov.za/projectsprogrammes/egis_landcover_datasets.

  • Geoterraimage (2020). South African National land-cover (SANLC) 2018. Department of Environment, Forestry and Fisheries South Africa. https://www.environment.gov.za/projectsprogrammes/egis_landcover_datasets

  • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159.

    Google Scholar 

  • Götze, A. R., Cilliers, S. S., Bezuidenhout, H., & Kellner, K. (2003). Analysis of the riparian vegetation (Ia land type) of the proposed Vhembe-Dongola National Park, Limpopo Province, South Africa. Koedoe, 46(2), 45–64.

    Google Scholar 

  • Gu, B., & Sheng, V. S. (2017). A robust regularization path algorithm for ν-support vector classification. IEEE Transactions on Neural Networks and Learning Systems, 28(5), 1241–1248.

    Google Scholar 

  • Guo, D., Desmet, P. G., & Powrie, L. W. (2017). Impact of the future changing climate on the southern Africa biomes, and the importance of geology. Journal of Geoscience and Environment Protection, 5, 1–9.

    Google Scholar 

  • Hackman, K. O., Gong, P., & Wang, J. (2017). New land-cover maps of Ghana for 2015 using Landsat 8 and three popular classifiers for biodiversity assessment. International Journal of Remote Sensing, 38(14), 4008–4021.

    Google Scholar 

  • Hoffman M. T., Rohde R. F., & Gillson L. (2018). Rethinking catastrophe ? Historical trajectories and modelled future vegetation change in southern Africa M, Anthropocene 25.

  • Hoffmann, S., Webster, H. J., Teske, P. R., Lutermann, H., Bennett, N. C., & Jansen, B. (2017). Characterization of 14 polymorphic microsatellite loci developed for an Afrotherian species endemic to southern Africa , Elephantulus myurus (Macroscelidea:Macroscelididae). Applied Entomology and Zoology, 52(1), 139–145.

    Google Scholar 

  • Houessou, L. G., Teka, O., Imorou, I. T., Lykke, A. M., & Sinsin, B. (2013). Land use and land-cover change at “W” Biosphere Reserve and its surroundings areas in Benin Republic ( West Africa ). Environment and Natural Resources Research, 3(2), 87–101.

    Google Scholar 

  • Ishwaran, N., Persic, A., & Tri, N. H. (2008). Concept and practice: the case of UNESCO Biosphere Reserves. International Journal of Environment and Sustainable Development, 7(2), 118–131.

    Google Scholar 

  • Jacobson, A., Dhanota, J., Godfrey, J., Jacobson, H., Rossman, Z., Stanish, A., Walker, H., & Riggio, J. (2015). A novel approach to mapping land conversion using Google Earth with an application to East Africa. Environmental Modelling and Software, 72, 1–9.

    Google Scholar 

  • Jia, K., Wei, X., Gu, X., Yao, Y., Xie, X., & Li, B. (2014). Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto International, 29(8), 941–951.

    Google Scholar 

  • Kala, C. P. (2015). Forest structure and anthropogenic pressures in the Pachmarhi Biosphere Reserve of India. Journal of Forestry Research, 26(4), 867–874.

    CAS  Google Scholar 

  • Kamwi, J. M., Kaetsch, C., Graz, F. P., Chirwa, P., & Manda, S. (2017). Trends in land use and land cover change in the protected and communal areas of the Zambezi region, Namibia. Environmental Monitoring and Assessment, 189(242).

  • Kenabatho, P. K., Mcintyre, N. R., Chandler, R. E., & Wheater, H. S. (2012). Stochastic simulation of rainfall in the semi-arid Limpopo basin, Botswana. International Journal of Climatology, 32, 1113–1127.

    Google Scholar 

  • Kim, C. (2016). Land use classification and land use change analysis using satellite images in Lombok Island, Indonesia. Forest Science and Technology, 12, 183–191.

    Google Scholar 

  • Konko, Y., Bagaram, B., Julien, F., & Akpamou, K. G. (2018). Multitemporal analysis of coastal erosion based on multisource satellite images in the south of the Mono Transboundary Biosphere Reserve in Togo (West Africa). Open Access Library Journal, 5, 1–18.

    Google Scholar 

  • Li, W., Ge, X., & Liu, C. (2005). Hiking trails and tourism impact assessment in protected area: Jiuzhaigou Biosphere Reserve China. Environmental Monitoring and Assessment, 108, 279–293.

    Google Scholar 

  • Linden, H. M. (2017). Development and application of a 30-year vegetation dataset to assess the impacts of fence removal within the Kruger to Canyons Biosphere Reserve , South Africa. Masters Theses, University of Connecticut Graduate School, 1091, 1–130.

  • Luvuno, L., Biggs, R., Stevens, N., & Esler, K. (2018). Woody encroachment as a social-ecological regime shift. Sustainability, 10(7), 2221.

    Google Scholar 

  • Manzo-Delgado, L., López-García, J., & Alcántara-Ayala, I. (2014). Role of forest conservation in lessening land degradation in a temperate region: the Monarch Butterfly Biosphere Reserve, Mexico. Journal of Environmental Management, 138, 55–66.

    Google Scholar 

  • Mitrofanenko, T., Snajdr, J., Muhar, A., Penker, M. & Schauppenlehner-Kloyber, E. (2018). Biosphere Reserve for all: Potentials for involving underrepresented age groups in the development of a Biosphere Reserve through intergenerational practice. Environmental Management, 62(3), 429–445.

  • Maroyi, A., & Mosina, G. K. E. (2014). Medicinal plants and traditional practices in peri-urban domestic gardens of the Limpopo province, South Africa. Indian Journal of Traditional Knowledge, 13(4), 665–672.

    Google Scholar 

  • Mostert, J. W., & Van Heerden, J. H. (2015). A computable general equilibrium (CGE) analysis of the expenditure on infrastructure in the Limpopo economy in South Africa. International Advances in Economic Research, 21(2), 227–236.

    Google Scholar 

  • Moxley, C. (2016). The effects of agriculture and alien plants on natural communities of plants, insect herbivores and parasitoids. Doctoral Desertation, Stellenbosch University.

  • Mpandeli, S. (2014). Managing climate risks using seasonal climate forecast information in Vhembe District in Limpopo Province, South Africa. Journal of Sustainable Development, 7(5), 68–81.

    Google Scholar 

  • Mphidi, M. F. (2019). The effectiveness of biosphere reserve as a tool for sustainable natural resource management in Vhembe District municipality, Limpopo Province, South Africa. Doctoral dissertation, University of Venda.

  • Mucina, L., & Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute.

    Google Scholar 

  • Mzezewa, J., Misi, T., & Van Rensburg, L. D. (2010). Characterisation of rainfall at a semi-arid ecotope in the Limpopo Province (South Africa) and its implications for sustainable crop production. Water SA, 36(1), 19–26.

    Google Scholar 

  • Navarrete, J. L., Isabel Ramírez, M., & Pérez-Salicrup, D. R. (2011). Logging within protected areas: spatial evaluation of the Monarch Butterfly Biosphere Reserve, Mexico. Forest Ecology and Management, 262(4), 646–654.

    Google Scholar 

  • Nel, L., Pryke, J. S., Carvalheiro, L. G., Thébault, E., Van Veen, F. J. F., & Seymour, C. L. (2017). Exotic plants growing in crop field margins provide little support to mango crop flower visitors. Agriculture, Ecosystems and Environment, 25, 72–80.

    Google Scholar 

  • Neumann, F. H., & Bamford, M. K. (2015). Shaping of modern southern African biomes: Neogene vegetation and climate. Transactions of the Royal Society of South Africa, 70(3), 195–212.

    Google Scholar 

  • Noi, P. T., & Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18(18), 1–20.

    Google Scholar 

  • Ntshuxeko, V. E., & Ruwanza, S. (2018). Physical properties of soil in pine elliottii and Eucalyptus cloeziana plantations in the Vhembe biosphere, Limpopo Province of South Africa. Journal of Forestry Research, pp.1–11.

  • Ofoegbu, C., Chirwa, P. W., Francis, J., & Babalola, F. D. (2016). Assessing forest-based rural communities’ adaptive capacity and coping strategies for climate variability and change: the case of Vhembe district in South Africa. Environmental Development, 18, 36–51.

    Google Scholar 

  • Ofoegbu, C., Chirwa, P. W., Francis, J., & Babalola, F. D. (2017). Socio-economic factors influencing household dependence on forests and its implication for forest-based climate change interventions. Southern Forests, 79(2), 109–116.

    Google Scholar 

  • Olah, B., & Boltiziar, M. (2009). Land use changes within the Slovak Biosphere Reserves’ zones. Ekologia Bratislava, 28(2), 127–142.

    Google Scholar 

  • Ortega-Huerta, M. A. (2007). Fragmentation patterns and implications for biodiversity conservation in three biosphere reserves and surrounding regional environments, northeastern Mexico. Biological Conservation, 134(1), 83–95.

    Google Scholar 

  • Parsa, A. V., Yavari, A., & Nejadi, A. (2016). Spatio-temporal analysis of land use/land cover pattern changes in Arasbaran Biosphere Reserve: Iran. Modeling Earth Systems and Environment, 2(4), 178.

    Google Scholar 

  • Price, M. F., Park, J. J., & Bouamrane, M. (2010). Reporting progress on internationally designated sites: the periodic review of biosphere reserves. Environmental Science and Policy, 13(6), 549–557.

    Google Scholar 

  • Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2015). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sensing, 7(1), 153–168.

    Google Scholar 

  • Rodriguez-Galiano, V. F., & Chica-Rivas, M. (2014). Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and digital terrain models. International Journal of Digital Earth, 7(6), 492–509.

    Google Scholar 

  • Sahana, M., Ahmed, R., & Sajjad, H. (2016). Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Modeling Earth Systems and Environment, 2(2), 81.

    Google Scholar 

  • Sánchez-Azofeifa, G. A., Quesada, M., Cuevas-Reyes, P., Castillo, A., & Sánchez-Montoya, G. (2009). Land cover and conservation in the area of influence of the Chamela-Cuixmala Biosphere Reserve, Mexico. Forest Ecology and Management, 258(6), 907–912.

    Google Scholar 

  • Saranya, K. R. L., & Reddy, C. S. (2016). Long term changes in forest cover and land use of Similipal Biosphere Reserve of India using satellite remote sensing data. Journal of Earth System Science, 125(3), 559–569.

    CAS  Google Scholar 

  • Satish, K. V., Saranya, K. R. L., Reddy, C. S., Krishna, P. H., Jha, C. S., & Rao, P. V. V. P. (2014). Geospatial assessment and monitoring of historical forest cover changes (1920–2012) in Nilgiri Biosphere Reserve, Western Ghats, India. Environmental Monitoring and Assessment, 186(12), 8125–8140.

    CAS  Google Scholar 

  • Scheiter, S., Gaillard, C., Martens, C., Erasmus, B. F. N., & Pfeiffer, M. (2018). How vulnerable are ecosystems in the Limpopo Province to climate change? South African Journal of Botany, 116, 86–95.

    Google Scholar 

  • Sengani F. & Zvarivadza T. (2019). The impact of sand mining on the fluvial environment: case study of Nzhelele River in Limpopo Province, South Africa. In: Widzyk-Capehart E., Hekmat A. & Singhal R. (eds) Proceedings of the 18th Symposium on Environmental Issues and Waste Management in Energy and Mineral Production. SWEMP 2018. Springer, Cham.

  • Shackleton, S., Chinyimba, A., Hebinck, P., Shackleton, C., & Kaoma, H. (2015). Multiple benefits and values of trees in urban landscapes in two towns in northern South Africa. Landscape and Urban Planning, 136, 76–86.

    Google Scholar 

  • Sharma, M., Areendran, G., Raj, K., Sharma, A., & Joshi, P. K. (2016). Multitemporal analysis of forest fragmentation in Hindu Kush Himalaya—a case study from Khangchendzonga Biosphere Reserve, Sikkim, India. Environmental Monitoring and Assessment, 188, 1–18.

    Google Scholar 

  • Shawul, A. A., & Chakma, S. (2019). Spatiotemporal detection of land use/land cover change in the large basin using integrated approaches of remote sensing and GIS in the Upper Awash basin, Ethiopia. Environmental Earth Science, 78, 1–13.

    Google Scholar 

  • Skidmore, A. K. (1999). Accuracy assessment of spatial information. In A. Stein, F. Van der Meer, & B. Gorte (Eds.), Spatial statistics for remote sensing (pp. 197–209). Dordrecht: Springer.

    Google Scholar 

  • Smith, Y. E. C., Smith, D. E. C., Seymour, C. L., Thebault, E., & van Veen, F. F. J. (2015). Response of avian diversity to habitat modification can be predicted from life-history traits and ecological attributes. Landscape Ecology, 30, 1225–1239.

    Google Scholar 

  • Son, N. T., Thanh, B. X., & Da, C. T. (2016). Monitoring mangrove forest changes from multi-temporal Landsat data in Can Gio Biosphere Reserve, Vietnam. Wetlands, 36(3), 565–576.

    Google Scholar 

  • South African Biodiversity Institute (2019). Vegetation of South Africa. Pretoria, South African Biodiversity Institute. http://pza.sanbi.org/vegetation. Accessed 06 Apr 2020

  • Statistics South Africa (2019). Five facts about poverty in South Africa. Pretoria, Statistics South Africa. http://www.statssa.gov.za/?p=12075 Accessed 04/03/2020.

  • Stevens, N., Erasmus, B. F. N., Archibald, S., & Bond, W. J. (2016). Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock? Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150437.

    Google Scholar 

  • Stevens, N., Lehmann, C. E., Murphy, B. P., & Durigan, G. (2017). Savanna woody encroachment is widespread across three continents. Global Change Biology, 23(1), 235–244.

    Google Scholar 

  • Story, M., & Congalton, R. G. (1986). Accuracy assessment: a user’s perspective. Photogrammetric Engineering & Remote Sensing, 52(3), 397–399.

    Google Scholar 

  • Swemmer, A. M., Bond, W. J., Donaldson, J., Hempson, G. P., Malherbe, J., & Smit, I. P. J. (2018). The ecology of drought-a workshop report. South African Journal osf science, 114, 1–3.

    Google Scholar 

  • Taïta, P. (2003). Use of woody plants by locals in Mare aux Hippopotames Biosphere Reserve in western Burkina Faso. Biodiversity and Conservation, 12(6), 1205–1217.

    Google Scholar 

  • Tiawoun, M. A. P., Tshisikhawe, M. P., & Gwata, E. T. (2018). A review on yellow peeling plane (Brackenridgea zanguebarica Oliv.): a critically endangered endemic plant species. 29(5), 1–13.

  • Tilahun, A., & Teferie, B. (2015). Accuracy assessment of land use land cover classification using. Google Earth, 4(4), 193–198.

    Google Scholar 

  • UNESCO. (1996). The statutory framework of the World Network of Biosphere Reserves. Paris: United Nations Educational Scientific and Cultural Organization.

    Google Scholar 

  • Van Cuong, C., Dart, P., Dudley, N., & Hockings, M. (2017). Factors influencing successful implementation of biosphere reserves in Vietnam: Challenges, opportunities and lessons learnt. Environmental Science and Policy, 67, 16–26.

    Google Scholar 

  • Van Rooyen, S. E. (2016). Composition and structure of woody vegetation in thickened and controlled bushveld savanna in the Molopo, South Africa (Doctoral dissertation, North-West University (South Africa), Potchefstroom Campus).

  • Van Wyk, A. E., & Smith, G. F. (2001). Regions of floristic endimism in southern Africa: a review with emphasis on succulents. Hatfield, South Africa: Umdaus press.

    Google Scholar 

  • Vittek, M., Brink, A., Donnay, F., & Simonetti, D. (2014). Land cover change monitoring using Landsat MSS/TM satellite image data over West Africa between 1975 and 1990. Remote Sensing, 6, 658–676.

    Google Scholar 

  • Von Thaden, J. J., Laborde, J., Guevara, S., & Venegas-Barrera, C. S. (2018). Forest cover change in the Los Tuxtlas Biosphere Reserve and its future: the contribution of the 1998 protected natural area decree. Land Use Policy, 72, 443–450.

    Google Scholar 

  • Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1(1), 9–23.

    Google Scholar 

  • Xu, J., Tang, Y. Y., Zou, B., Xu, Z., Li, L., & Lu, Y. (2014). The generalization ability of online SVM classification based on Markov sampling. IEEE Transactions on Neural Networks and Learning Systems, 26(3), 628–638.

    Google Scholar 

  • Yang, X., Blagodatsky, S., Lippe, M., Liu, F., Hammond, J., Xu, J., & Cadisch, G. (2016). Land-use change impact on time-averaged carbon balances: rubber expansion and reforestation in a biosphere reserve, South-West China. Forest Ecology and Management, 372, 149–163.

    Google Scholar 

  • Yee, K. M., Wai, K. P., Jinhyung, B., & Uong, C. C. (2015). Land use and land cover mapping based on band ratioing with subpixel classification by support vector machine techniques (a case study on Ngamoeyeik Dam area, Yangon Region). Journal of Geological Resource and Engineering, 3, 127–133.

    Google Scholar 

  • Yirsaw, E., Wu, W., Shi, X., Temesgen, H., & Bekele, B. (2017). Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang region. Sustainability, 9, 1–17.

    Google Scholar 

Download references

Acknowledgments

The University of Johannesburg provided all necessary support for the research.

Funding

The authors acknowledge the University of Johannesburg Commonwealth Scholarship for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tanre I. Jauro or Solomon G. Tesfamichael.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 39.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jauro, T.I., Tesfamichael, S.G. & Rampedi, I.T. Tracking conservation effectiveness in the Vhembe Biosphere Reserve in South Africa using Landsat imagery. Environ Monit Assess 192, 469 (2020). https://doi.org/10.1007/s10661-020-08416-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08416-w

Keywords

Navigation