Skip to main content

Advertisement

Log in

Using stable isotopes to assess river water dynamics and groundwater input in the largest European Arctic river (Severnaya Dvina)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rivers play a key role in the water cycle on the earth via integrating all hydrological channels to return terrestrial precipitations back to the oceans. In addition, rivers, together with groundwater, are powerful transformers of the surface lithosphere, responsible for chemical weathering of rocks and the removal of solute into the ocean. Tracing the dynamics of surface water and groundwater versus atmospheric feeding of rivers presents important issues in Arctic regions due to the ongoing change of the structure of hydrological runoff. In this study, stable water isotopes were used to reveal the temporal dynamics of water sources and to predict their possible change under the conditions of ongoing climate warming of the largest European Arctic river, the Severnaya Dvina, and adjacent groundwater. The isotopic composition of the river waters of the studied region is formed by the mixing of atmospheric precipitation with groundwater. The isotopic depletion in the springtime is mainly due to the recharge of thawed snow waters. A less pronounced effect in the autumn-winter period is provided by the discharge of groundwater into rivers, including the meltwater of the Last Glacial Period. This depletion is partially offset due to discharge of isotopically light thawed snow waters and is linked to evaporation in headwater streams, reservoirs, and wetlands. The isotopic composition of groundwater with low mineralization was formed throughout the Holocene and to a large extent depends on paleoclimatic conditions in the study area. In addition to fresh groundwater, brackish groundwater also takes part in the river’s recharge. These brackish waters are associated with ancient and modern marine transgressions on the estuarine site and with the dissolution of Ca sulfate rocks in a karst region located in the middle reaches of the river. According to isotope data, the average annual input of the underground source to the total river flow is 25%. The results of this work will serve as the basis for continuing monitoring of the isotopic composition of river waters with an assessment of hydrological processes and observation of short as well as long-term climatic and anthropogenic impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ala-aho, P., Soulsby, C., Wang, H., & Tetzlaff, D. (2017). Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation. Journal of Hydrology, 547, 664–677. https://doi.org/10.1016/j.jhydrol.2017.02.023.

    Article  Google Scholar 

  • Ala-aho, P., Soulsby, C., Pokrovsky, O. S., Kirpotin, S. N., Karlsson, J., Serikova, S., Vorobyev, S. N., Manasypov, R. M., Loiko, S., & Tetzlaff, D. (2018). Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. Journal of Hydrology, 556, 279–293. https://doi.org/10.1016/j.jhydrol.2017.11.024.

    Article  CAS  Google Scholar 

  • Alexakis, D. (2011). Assessment of water quality in the Messolonghi-Etoliko and Neochorio region (West Greece) using hydrochemical and statistical analysis methods. Environmental Monitoring and Assessment, 182, 397–413. https://doi.org/10.1007/s10661-011-1884-2.

    Article  CAS  Google Scholar 

  • Alexakis, D., Gotsis, D., & Giakoumakis, S. (2012). Assessment of drainage water quality in pre- and post-irrigation seasons for supplemental irrigation use. Environmental Monitoring and Assessment, 184-8, 5051–5063. https://doi.org/10.1007/s10661-011-2321-2.

    Article  CAS  Google Scholar 

  • Alisov, B. P. (1956). The climate of the USSR. Moscow: MSU (in Ryssian). https://search.rsl.ru/ru/record/01005864081.

    Google Scholar 

  • Arnell, N. W. (1999). Climate change and global water resources. Global Environmental Change, 9, 31–49.

    Article  Google Scholar 

  • Berland, T.G. (1948). Radiation and heat balance of the European territory of the USSR. In Proceedings of the Main Geophysical Observatory, 10 (72) Leningrad: Gidrometizdat (in Ryssian). http://elib.rshu.ru/files_books/pdf/img-311170844.pdf

  • Carey, S., & Quinton, W. (2004). Evaluating snowmelt runoff generation in a discontinuous permafrost catchment using stable isotope, hydrochemical and hydrometric data. Hydrology Research, 35, 309–324.

    Article  CAS  Google Scholar 

  • Cerqueira, T. C., Mendonça, R. L., Gomes, R. L., de Jesus, R. M., & da Silva, D. M. L. (2020). Effects of urbanisation on water quality in a watershed in northeastern Brazil. Environmental Monitoring and Assessment, 192, 65. https://doi.org/10.1007/s10661-019-8020-0.

    Article  CAS  Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. Boca Raton, New York: Lewis Publishers. isbn:1-56670-249-6.

    Google Scholar 

  • Cooper, L. W., McClelland, J. W., Holmes, R. M., Raymond, P. A., Gibson, J., Guay, C. K., et al. (2008). Flow-weighted values of runoff tracers (d18O, DOC, Ba, alkalinity) from the six largest Arctic rivers. Geophysical Research Letters, 35, L18606. https://doi.org/10.1029/2008GL035007.

  • Dittmar, T., & Kattner, G. (2003). The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review. Marine Chemistry, 83, 103–120.

    Article  CAS  Google Scholar 

  • Drake, T. W., Wickland, K. P., Spencer, R. G. M., McKnight, D. M., & Striegl, R. G. (2015). Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proceedings of the National Academy of Sciences, 112, 13946–13951.

    Article  CAS  Google Scholar 

  • Ferronsky, V. I., & Polyakov, V. A. (2012). Isotopes of the Earth’s hydrosphere. Dordrecht, Heidelberg, London, NewYork: Springer https://b-ok.org/book/2056657/66e617.

    Book  Google Scholar 

  • Fischer, T. P., & Chiodini, G. (2015) Volcanic, magmatic and hydrothermal gases. In: H. Sigurdsson (Ed.) the encyclopedia of volcanoes (second edition). Academic press. 779-797 https://doi.org/10.1016/B978-0-12-385938-9.00045-6

  • Gerber, C., Vaikmäe, R., Aeschbach, W., Babre, A., Jiang, W., Leuenberger, M., Lu, Z.-T., Mokrik, R., Müller, P., Raidla, V., Saks, T., Waber, H. N., Weissbach, T., Zappala, J. C., & Purtschert, R. (2017). Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochimica et Cosmochimica Acta, 205, 187–210. https://doi.org/10.1016/j.gca.2017.01.033.

    Article  CAS  Google Scholar 

  • Gibson, J. J., Edwards, T. W. D., Birks, S. J., St Amour, N. A., Buhay, W. M., McEachern, P., Wolfe, B. B., & Peters, D. L. (2005). Progress in isotope tracer hydrology in Canada. Hydrological Processes, 19-1, 303–327.

    Article  Google Scholar 

  • Gordeev, V. V., Martin, J. M., Sidorov, I. S., & Sidorova, M. V. (1996). A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. American Journal of Science, 296, 664–691.

    Article  CAS  Google Scholar 

  • Gordeev, V. V., Rachold, V., & Vlasova, I. E. (2004). Geochemical behavior of major an dtrace elements in suspended particulate material of the Irtysh river, the main tributary of the Ob river, Siberia. Applied Geochemistry, 19, 593–610.

    Article  CAS  Google Scholar 

  • Gromova, R. V., Shchuranova, N. N., Kharchenko, K. I., et al. (1980). Water resources of the non-chernozem zone of the RSFSR. Leningrad: Hydrometeoizdat (in Russian). https://search.rsl.ru/ru/record/01001026928.

    Google Scholar 

  • Halder, J., Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., & Aggarwal, P. K. (2015). GNIR: Integration of water isotopes in watershed observation and riverine research. Hydrology and Earth System Sciences, 19, 3419–3431 https://www.hydrol-earth-syst-sci.net/19/3419/2015/.

    Article  CAS  Google Scholar 

  • Hayashi, M., Quinton, W. L., Pietroniro, A., & Gibson, J. J. (2004). Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures. Journal of Hydrology, 296, 81–97.

    Article  CAS  Google Scholar 

  • Holmes, R. M., Peterson, B. J., Gordeev, V. V., Zhulidov, A. V., Meybeck, M., Lammers, R. B., & Vörösmarty, C. J. (2000). Flux of nutrients from Russian rivers to the Arctic Ocean: Can we establish a baseline against which to judge future changes? Water Resources Research, 36(8), 2309–2320.

    Article  CAS  Google Scholar 

  • Holmes, R. M., Peterson, B. J., Zhulidov, A. V., Gordeev, V. V., Makkaveev, P. N., Stunzhas, P. A., Kosmenko, L. S., Köhler, G. H., & Shiklomanov, A. I. (2001). Nutrient chemistry of the Ob’ and Yenisey Rivers, Siberia: Results from June 2000 expedition and evaluation of long-term data sets. Marine Chemistry, 75, 219–227.

    Article  CAS  Google Scholar 

  • Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina, E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A., Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., & Zimov, S. A. (2012). Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries and Coasts, 35, 369–382. https://doi.org/10.1007/s12237-011-9386-6.

    Article  CAS  Google Scholar 

  • IAEA/WMO. (2019). Global Network of Isotopes in Precipitation. The GNIP Database. Accessible at: https://nucleus.iaea.org/wiser

    Google Scholar 

  • Kortelainen, N. M., & Karhu, J. A. (2004). Regional and seasonal trends in the oxygen and hydrogen isotope ratios of Finnish groundwaters: a key for mean annual precipitation. Journal of Hydrology, 285(1–4), 143–157. https://doi.org/10.1016/j.jhydrol.2003.08.014.

    Article  CAS  Google Scholar 

  • La Femina P. C. (2015) Plate tectonics and volcanism. In: H. Sigurdsson (Ed.) The Encyclopedia of Volcanoes (Second Edition). Academic Press. 65–92. https://doi.org/10.1016/B978-0-12-385938-9.00003-1

  • Magritsky, D. V. (2010). Annual suspended matter flow of the Russian rivers belonging to the Arctic Ocean basin and its anthropogenic transformation. Bulletin of Moscow University. Series 5. Geography, 5(6), 17–24.

    Google Scholar 

  • Malov, A. I. (2004). Water-rock interaction in Vendian Sandy-clayey rocks of the Mezen Syneclise. Lithology and Mineral Resources, 39(4), 345–356. https://doi.org/10.1023/B:LIMI.0000033821.50195.ef.

    Article  CAS  Google Scholar 

  • Malov, A. I. (2018). Evolution of the groundwater chemistry in the coastal aquifers of the south-eastern White Sea area (NW Russia) using 14C and 234U-238U dating. The Science of the Total Environment, 616-617, 1208–1223. https://doi.org/10.1016/j.scitotenv.2017.10.197.

    Article  CAS  Google Scholar 

  • Malov, A. I., & Tokarev, I. V. (2019). Using stable isotopes to characterize the conditions of groundwater formation on the eastern slope of the Baltic Shield (NW Russia). Journal of Hydrology, 578, 124130. https://doi.org/10.1016/j.jhydrol.2019.124130.

    Article  CAS  Google Scholar 

  • Malov, A. I., Kiselev, G. P., Rudik, G. P., & Zykov, S. B. (2009). Uranium isotopes in the groundwater of the Vend of the Mezen Syneclise. Water Resources, 36(6), 682–691. https://doi.org/10.1134/S0097807809060086.

    Article  CAS  Google Scholar 

  • McDonnell, J. J., & Beven, K. (2014). Debates-the future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research, 50, 5342–5350. https://doi.org/10.1002/2013WR015141.

    Article  Google Scholar 

  • Mook, W. G. (Ed.). (2001). Environmental Isotopes in the hydrological cycle. Principles and applications. IHP-V Technical Documents in Hydrology, N° 39. Paris: UNESCO. Vol. II-IV.

    Google Scholar 

  • Pärn, J., Raidla, V., Rein, V., Martma, T., Ivask, J., Mokrik, R., & Erg, K. (2016). The recharge of glacial meltwater and its influence on the geochemical evolution of groundwater in the Ordovician-Cambrian aquifer system, northern part of the Baltic Artesian Basin. Applied Geochemistry, 72, 125–135.

    Article  Google Scholar 

  • Raidla, V., Kirsimäe, K., Vaikmäe, R., Jõeleht, A., Karro, E., Marandi, A., & Savitskaja, L. (2009). Geochemical evolution of groundwater in the Cambrian–Vendian aquifer system of the Baltic Basin. Chemical Geology, 258, 219–231. https://doi.org/10.1016/j.chemgeo.2008.10.007.

    Article  CAS  Google Scholar 

  • Ryabchikov, I. D. (1999). Fluid regime of the Earth’s mantle. Bulletin of the Department of Geology, Geophysics, Geochemistry and Mining Sciences of the Russian Academy of Sciences., 3(9), 141–153 (In Russian).

    Google Scholar 

  • Saks, T., Sennikovs, J., Timuhins, A., Marandi, A., & Kalvans, A. (2012). Groundwater flow beneath the Scandinavian ice sheet in the Baltic Basin. In A. Delina, A. Kalvans, T. Saks, U. Bethers, & V. Vircavs (Eds.), Highlights of groundwater research in the Baltic Artesian Basin (pp. 75–90). Riga: University of Latvia.

    Google Scholar 

  • Song, C., Wang, G., Liu, G., Mao, T., Sun, X., & Chen, X. (2017). Stable isotope variations of precipitation and stream flow reveal the young water fraction of a permafrost watershed. Hydrological Processes, 31, 935–947. https://doi.org/10.1002/hyp.11077.

    Article  CAS  Google Scholar 

  • Sorokhtin, O. G. (2007). Life of the Earth. Moscow-Izhevsk: SIC Regular and chaotic dynamics (In Russian). https://www.ozon.ru/context/detail/id/3996831/.

    Google Scholar 

  • St. Jacques, J.-M., & Sauchyn, D. J. (2009). Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophysical Research Letters, 36, L01401. https://doi.org/10.1029/2008GL035822.

    Article  Google Scholar 

  • Streletskiy, D. A., Tananaev, N. I., Opel, T., Shiklomanov, N. I., Nyland, K. E., Streletskaya, I. D., Tokarev, I.’., & Shiklomanov, A. I. (2015). Permafrost hydrology in changing climatic conditions: Seasonal variability of stable isotope composition in rivers in discontinuous permafrost. Environmental Research Letters, 10, 095003. https://doi.org/. https://doi.org/10.1088/1748-9326/10/9/095003.

    Article  CAS  Google Scholar 

  • Tank, S. E., Raymond, P. A., Striegl, R. G., McClelland, J. W., Holmes, R. M., Fiske, G. J., & Peterson, B. J. (2012). A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Global Biogeochemical Cycles, 26, GB4018.

    Google Scholar 

  • Tetzlaff, D., Buttle, J., Carey, S. K., McGuire, K., Laudon, H., & Soulsby, C. (2015). Tracerbased assessment of flow paths, storage and runoff generation in northern catchments: A review. Hydrological Processes, 29, 3475–3490. https://doi.org/10.1002/hyp.10412.

    Article  Google Scholar 

  • Throckmorton, H. M., Newman, B. D., Heikoop, J. M., Perkins, G. B., Feng, X., Graham, D. E., O'Malley, D., Vesselinov, V. V., Young, J., Wullschleger, S. D., & Wilson, C. J. (2016). Active layer hydrology in an arctic tundra ecosystem: Quantifying water sources and cycling using water stable isotopes. Hydrological Processes, 30, 4972–4986. https://doi.org/10.1002/hyp.10883.

    Article  Google Scholar 

  • Vystavna, Y., Diadin, D., & Huneau, F. (2018). Defining a stable water isotope framework for isotope hydrology application in a large trans-boundary watershed (Russian Federation/Ukraine). Isotopes in Environmental and Health Studies, 54-2, 147–167. https://doi.org/10.1080/10256016.2017.1346635.

    Article  CAS  Google Scholar 

  • Walvoord, M. A., & Striegl, R. G. (2007). Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophysical Research Letters, 34, L12402. https://doi.org/10.1029/2007GL030216.

    Article  CAS  Google Scholar 

  • Walvoord, M., Voss, C., & Wellman, T. (2012). Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resources Research, 48, W07524. https://doi.org/10.1029/2011WR011595.

    Article  Google Scholar 

  • Wassenaar, L. I., Coplen, T. B., & Aggarwal, P. K. (2014). Approaches for achieving long-term accuracy and precision of δ18O and δ2H for waters analyses using laser absorption spectrometers. Environmental Science & Technology, 48, 1123–1131.

    Article  CAS  Google Scholar 

  • Welp, L., Randerson, J., Finlay, J., Davydov, S., Zimova, G., Davydova, A., et al. (2005). A high-resolution time series of oxygen isotopes from the Kolyma River: Implications for the seasonal dynamics of discharge and basin-scale water use. Geophysical Research Letters, 32, L14401. https://doi.org/10.1029/2005GL022857.

    Article  CAS  Google Scholar 

  • Yasukevich, V. V., Govorkova, V. A., Korneva, I. A., Pavlova, T. V., & Popova, E. N. (Eds.). (2014). Second Roshydromet assessment report on climate change and its consequences in Russian Federation. Moscow: Roshydromet (in Russian). https://cc.voeikovmgo.ru/images/dokumenty/2016/od2/resume_ob_eng.pdf.

    Google Scholar 

  • Yi, Y., Gibson, J., Cooper, L. W., Hélie, J., Birks, S., McClelland, J. W., et al. (2012). Isotopic signals (18O, 2H, 3H) of six major rivers draining the pan-Arctic watershed. Global Biogeochemical Cycles, 26. https://doi.org/10.1029/2011GB004159.

  • Yurtsever, Y. (1975). Worldwide survey of isotopes in precipitation. Vienna: IAEA report.

    Google Scholar 

  • Yurtsever, Y., & Gat, J. R. (1981). Stable isotopes in atmospheric waters. In J. R. Gat & R. Gonfiantini (Eds.), Stable isotope hydrology (pp. 103–142). Vienna: IAEA.

    Google Scholar 

  • Zuzevicius, A. (2010). The groundwater dynamics in the southern part of the Baltic Artesian Basin during the Late Pleistocene. Baltica, 23, 1–12.

    Google Scholar 

  • Zverev, V. P. (2013). The system of natural waters of the Earth. Moscow: Scientific world (in Russian).

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank International Atomic Energy Agency for providing technical support within IAEA Research Contract No. 18350 “Stable and Radiogenic Isotopes of Dissolved and Particulate Load in Russian Arctic Rivers.” The authors thank L. Wassenaar and J. Halder for the analytical determinations.

Funding

This work was supported by the Russian Ministry of Education and Science (project no. № AAAA-A19-119011890018-3), the UB RAS (project no. 18-5-5-26), and the Russian Foundation for Basic Research (projects no. 20-05-00045_A, no. 18-05-60151_Arctic; no. 18-05-01041_A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Malov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malov, A., Pokrovsky, O. & Chupakov, A. Using stable isotopes to assess river water dynamics and groundwater input in the largest European Arctic river (Severnaya Dvina). Environ Monit Assess 192, 444 (2020). https://doi.org/10.1007/s10661-020-08414-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08414-y

Keywords

Navigation