Skip to main content

Advertisement

Log in

Agricultural soils a trigger to nitrous oxide: a persuasive greenhouse gas and its management

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Agricultural soils form the backbone of the country’s economic development. The increased population has not only reduced this treasure but also has affected the global climate at an alarming rate. Among the GHGs, emission of N2O due to agricultural activities is nowadays a global concern. Agricultural industries have increased N2O and CH4 by 17% in the atmosphere since 1990, with an average emanation rate of around 60 MT CO2 equivalents per year. Crop production accounts for approximately 50% of N2O emissions stemming from the farming community and discharges of fertilizer-induced N2O, for the time being estimated by IPCC at 1.24% of the N used ranging from 0.76% (rice) to 2.77% (maize). The concentration of atmospheric N2O has increased (60 ppb) after the industrial revolution, at the pace of 0.73 ppb year−1. Besides, soil structure, temperature, moisture, denitrifying microbial population, pH, C:N ratio, and relief are the factors which significantly enhance the N2O levels into the atmosphere. N2O as a GHG has more potential towards global warming than CO2 and has a very long residence period (115 years) in the atmosphere. N2O emission is nowadays a core issue which needs to be mitigated so as to decline the levels of its production in agricultural soils. However, priority should be given to the organic farming, management of soil chemistry, and phytoremediation to reduce the addition of N2O into the ambient air. Furthermore, deployment of N2O reductase in agricultural soils increases the efficiency of converting N2O to inert N2 which is a valuable strategy to reduce N2O production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbasi, M. K., & Adams, W. A. (2000). Gaseous N emission during simultaneous nitrification–denitrification associated with mineral N fertilization to a grassland soil under field conditions. Soil Biology and Biochemistry, 32(8–9), 1251–1259.

    CAS  Google Scholar 

  • Aggarwal, P. K. (2003). Impact of climate change on Indian agriculture. Journal of Plant Biology, 30(2), 189–198.

    Google Scholar 

  • Alexander V, BillinGTon MM. Nitrogen fixation in the Alaskan taiga (1986) In Forest ecosystems in the Alaskan taiga 112–120.

  • Baggs, E. M., Rees, R. M., Smith, K. A., & Vinten, A. J. (2000). Nitrous oxide emission from soils after incorporating crop residues. Soil Use and Management, 16(2), 82–87.

    Google Scholar 

  • Barton, L., Kiese, R., Gatter, D., Butterbach-Bahl, K. L., Buck, R., Hinz, C., & Murphy, D. V. (2008). Nitrous oxide emissions from a cropped soil in a semi-arid climate. Global Change Biology, 14(1), 177–192.

    Google Scholar 

  • Battaglia, G., & Joos, F. (2018). Marine N2O emissions from nitrification and denitrification constrained by modern observations and projected in multimillennial global warming simulations. Global Biogeochemical Cycles, 32(1), 92–121.

    CAS  Google Scholar 

  • Bhatia, A., Jain, N., & Pathak, H. (2013). Methane and nitrous oxide emissions from Indian rice paddies, agricultural soils and crop residue burning. Greenhouse Gases: Science and Technology, 3(3), 196–211.

    CAS  Google Scholar 

  • Bouwman AF (1990) Soils and the greenhouse effect. In: Proceedings of the international conference soils and the greenhouse effect, International Soil Reference and Information Centre ISRIC, New York, pp 575.

  • Bramley RG, White RE (1989) The effect of pH, liming, moisture and temperature on the activity of nitrifiers in a soil under [ryegrass-white clover] pasture. Australian Journal of Soil Research

  • Brasil (2010) Ministério da Ciência e Tecnologia. Coordenação Geral de Mudanças Globais do Clima. Segundacomunicação nacional do Brasil à convenção-quadrodas Nações Unidas sobre mudança do clima. Brasília, DF: Ministério da Ciência e Tecnologia,

  • Bremner, J. M. (1997). Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 49(1–3), 7–16.

    CAS  Google Scholar 

  • Brentrup, F., & Küsters, J. (2000). Methods to estimate potential N emissions related to crop production. Agricultural data for life cycle assessments, 5, 349–357.

    CAS  Google Scholar 

  • Brittain, T., Blackmore, R., Greenwood, C., & Thomson, A. J. (1993). Bacterial nitrite-reducing enzymes. InEJB Reviews, 209, 793–802.

    Google Scholar 

  • Butterbach-Bahl, K., & Dannenmann, M. (2011). Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Current Opinion in Environmental Sustainability, 3(5), 389–395.

    Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society, B: Biological Sciences 368(1621):20130122.

  • Carmo, J. B., Andrade, C. A., Cerri, C. C., & Piccolo, M. D. (2005). Nitrogen availability and N2O fluxes from pasture soil after herbicide application. Revista Brasileira de Ciência do Solo, 29(5), 735–746.

    Google Scholar 

  • Cerri, C. C., Maia, S. M., Galdos, M. V., Cerri, C. E., Feigl, B. J., & Bernoux, M. (2009). Brazilian greenhouse gas emissions: the importance of agriculture and livestock. Scientia Agricola, 66(6), 831–843.

    CAS  Google Scholar 

  • Chapuis-Lardy, L. Y., Wrage, N., Metay, A., Chotte, J. L., & Bernoux, M. (2007). Soils, a sink for N2O? A review. Global Change Biology, 13(1), 1–7.

    Google Scholar 

  • Chen, S., Huang, Y., & Zou, J. (2008). Relationship between nitrous oxide emission and winter wheat production. Biology and Fertility of Soils Aug, 44(7), 985–989.

    CAS  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C(2014) Carbon and other biogeochemical cycles. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Apr (pp. 465-570). Cambridge University Press

  • Ciampitti, I. A., Ciarlo, E. A., & Conti, M. E. (2008). Nitrous oxide emissions from soil during soybean Glycine max L. Merrill crop phenological stages and stubbles decomposition period. Biology and Fertility of Soils, 44(4), 581–588.

    Google Scholar 

  • Ciarlo, E., Conti, M., Bartoloni, N., & Rubio, G. (2008). Soil N2O emissions and N2O/(N2O+ N2) ratio as affected by different fertilization practices and soil moisture. Biology and Fertility of Soils, 44(7), 991–995.

    CAS  Google Scholar 

  • Cutruzzol, F. (1999). Bacterial nitric oxide synthesis. Biochemical and Biophysic Acta, 1411, 231–249.

    Google Scholar 

  • Daniel, R. M., Smith, I. M., Phillip J, A. D., Ratcliffe, H. D., Drozd, J. W., & Bull, A. T. (1980). Anaerobic growth and denitrification by Rhizobium japonicum and other rhizobia. Journal of General Microbiology, 120, 517–521.

    CAS  Google Scholar 

  • Daniel, R. M., Limmer, A. W., Steele, K. W., & Smith, I. M. (1982). Anaerobic growth, nitrate reduction and denitrification in 46 Rhizobium strains. Microbiology, 128(8), 1811–1815.

    CAS  Google Scholar 

  • Das, D. K., Singh, J., & Vennila, S. (2011). Emerging crop pest scenario under the impact of climate change–a brief review. Journal of Agricultural Physics, 11, 13–20.

    CAS  Google Scholar 

  • Davidson, E. A. (2009). The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2(9), 659–662.

    CAS  Google Scholar 

  • Davidson, E. A., & Kanter, D. (2014). Inventories and scenarios of nitrous oxide emissions. Environmental Research Letters, 9(10), 105012.

    Google Scholar 

  • Davidson, E. A., & Swank, W. T. (1986). Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification. Applied and Environmental Microbiology, 52(6), 1287–1292.

    CAS  Google Scholar 

  • Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., & Veldkamp, E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen availability and soil water content. Bioscience, 50(8), 667–680.

    Google Scholar 

  • Davis, M. P., Groh, T. A., Jaynes, D. B., Parkin, T. B., & Isenhart, T. M. (2019). Nitrous oxide emissions from saturated riparian buffers: Are we trading a water quality problem for an air quality problem. Journal of Environmental Quality, 48(2), 261–269.

    CAS  Google Scholar 

  • Del Grosso SJ, Wirth T, Ogle SM, Parton WJ (2008) Estimating agricultural nitrous oxide emissions. EOS, Transactions American Geophysical Union 89(51):529.

  • Denmead, O. T., Macdonald, B. C., Bryant, G., Naylor, T., Wilson, S., Griffith, D. W., Wang, W. J., Salter, B., White, I., & Moody, P. W. (2010). Emissions of methane and nitrous oxide from Australian sugarcane soils. Agricultural and Forest Meteorology, 150(6), 748–756.

    Google Scholar 

  • Di, H. J., & Cameron, K. C. (2012). How does the application of different nitrification inhibitors affect nitrous oxide emissions and nitrate leaching from cow urine in grazed pastures? Soil Use and Management, 28(1), 54–61.

    Google Scholar 

  • Dijkstra, F. A., Augustine, D. J., Brewer, P., & von Fischer, J. C. (2012). Nitrogen cycling and water pulses in semiarid grasslands: are microbial and plant processes temporally asynchronous? Oecologia, 170(3), 799–808.

    Google Scholar 

  • Firestone, M. K., & Davidson, E. A. (1989). Microbiological basis of NO and N2O production and consumption in soil. Exchange of trace gases between terrestrial ecosystems and the atmosphere, 47, 7–21.

    CAS  Google Scholar 

  • Flessa, H., Wild, U., Klemisch, M., & Pfadenhauer, J. (1998). Nitrous oxide and methane fluxes from organic soils under agriculture. European Journal of Soil Science, 49(2), 327–335.

    CAS  Google Scholar 

  • French, C. E., Rosser, S. J., Davies, G. J., Nicklin, S., & Bruce, N. C. (1999). Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nature Biotechnology, 17, 491–494 [CrossRef] [PubMed].

    CAS  Google Scholar 

  • Gerber, J. S., Carlson, K. M., Makowski, D., Mueller, N. D., Garcia de Cortazar-Atauri, I., Havlík, P., Herrero, M., Launay, M., O’connell, C. S., Smith, P., & West, P. C. (2016). Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Global Change Biology, 22(10), 3383–3394.

    Google Scholar 

  • Giacomini, S. J. (2006). Nitrous oxide emissions following pig slurry application in soil under no-tillage system. Pesquisa Agropecuária Brasileira, 41, 1653–1661.

    Google Scholar 

  • Glockner, A. B., Jüngst, A., & Zumft, W. G. (1993). Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd 1-free background (NirS−) of Pseudomonas stutzeri. Archives of Microbiology, 160(1), 18–26.

    CAS  Google Scholar 

  • Gruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176), 293–296.

    CAS  Google Scholar 

  • Hao, X., Chang, C., Carefoot, J. M., Janzen, H. H., & Ellert, B. H. (2001). Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management. Nutrient Cycling in Agroecosystems, 60(1–3), 1–8.

    CAS  Google Scholar 

  • Hayatsu, M., Tago, K., & Saito, M. (2008). Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition, 54(1), 33–45.

    CAS  Google Scholar 

  • Hedin, L. O., Brookshire, E. J., Menge, D. N., & Barron, A. R. (2009). The nitrogen paradox in tropical forest ecosystems. Annual Review of Ecology, Evolution, and Systematics, 40, 613–635.

    Google Scholar 

  • Hélias, A. (2019). At the boundary between anthropogenic and environmental systems: the neglected emissions of indirect nitrous oxide. The International Journal of Life Cycle Assessment, 24(3), 412–418.

    Google Scholar 

  • Hendriks, J., Oubrie, A., Castresana, J., Urbani, A., Gemeinhardt, S., & Saraste, M. (2000). Nitric oxide reductases in bacteria. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1459(2–3), 266–273.

    CAS  Google Scholar 

  • Johnson, J. M., Franzluebbers, A. J., Weyers, S. L., & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150(1), 107–124.

    CAS  Google Scholar 

  • Kang MS, Banga SS (2013) Greenhouse gas emission from agricultural soils: Sources and mitigation potential, Chapter V In: Combating climate change: an agricultural perspective.

  • Kanter, D. R., Zhang, X., Mauzerall, D. L., Malyshev, S., & Shevliakova, E. (2016). The importance of climate change and nitrogen use efficiency for future nitrous oxide emissions from agriculture. Environmental Research Letters, 11(9), 094003.

    Google Scholar 

  • Khalil, K., Mary, B., & Renault, P. (2004). Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biology and Biochemistry, 36(4), 687–699.

    CAS  Google Scholar 

  • Kritee, K., Nair, D., Zavala-Araiza, D., Proville, J., Rudek, J., Adhya, T. K., & Ram, K. (2018). High nitrous oxide fluxes from rice indicate the need to manage water for both long-and short-term climate impacts. Proceedings of the National Academy of Sciences, 115(39), 9720–9725.

    CAS  Google Scholar 

  • Liimatainen, M., Voigt, C., Martikainen, P. J., Hytönen, J., Regina, K., Óskarsson, H., & Maljanen, M. (2018). Factors controlling nitrous oxide emissions from managed northern peat soils with low carbon to nitrogen ratio. Soil Biology and Biochemistry, 122, 186–195 [CrossRef].

    CAS  Google Scholar 

  • Liu, L., & Greaver, T. L. (2009). A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecology Letters, 12(10), 1103–1117.

    CAS  Google Scholar 

  • Liu, X. J., Mosier, A. R., Halvorson, A. D., & Zhang, F. S. (2006). The impact of nitrogen placement and tillage on NO, N 2 O, CH 4 and CO 2 fluxes from a clay loam soil. Plant and Soil, 280(1–2), 177–188.

    CAS  Google Scholar 

  • Liu, C., Wang, K., Meng, S., Zheng, X., Zhou, Z., Han, S., Chen, D., & Yang, Z. (2011). Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat–maize rotation field in northern China. Agriculture, Ecosystems and Environment, 140(1–2), 226–233.

    CAS  Google Scholar 

  • McGowan, A. R., Roozeboom, K. L., & Rice, C. W. (2019). Nitrous oxide emissions from annual and perennial biofuel cropping systems. Agronomy Journal, 111(1), 84–92.

    CAS  Google Scholar 

  • Montzka, S. A., Dlugokencky, E. J., & Butler, J. H. (2011). Non-CO2 greenhouse gases and climate change. Nature, 476(7358), 43–50.

    CAS  Google Scholar 

  • Moreira, FMS and Siqueira, JO (2006) Microbiologia e bioquímica do solo. 2nd edition. Lavras: UFLa.

  • Mosier, A. R. (2001). Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere. Plant and Soil, 228(1), 17–27.

    CAS  Google Scholar 

  • Mulvaney, R. L., Khan, S. A., & Mulvaney, C. S. (1997). Nitrogen fertilizers promote denitrification. Biology and Fertility of Soils, 24(2), 211–220.

    CAS  Google Scholar 

  • Nägele, W., & Conrad, R. (1990). Influence of soil pH on the nitrate-reducing microbial populations and their potential to reduce nitrate to NO and N2O. FEMS Microbiology Letters, 74(1), 49–57.

    Google Scholar 

  • Nahar, N., Rahman, A., Nawani, N. N., Ghosh, S., & Mandal. (2017). A. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. Journal of Plant Physiology, 218, 121–126 [CrossRef] [PubMed].

    CAS  Google Scholar 

  • Pandeya, D., Campbell, L. A. M., Nunes, E., Lopez-Arredondo, D. L., Janga, M. R., Herrera-Estrella, L., & Rathore. (2017). KS ptxD gene in combination with phosphite serves as a highly effective selection system to generate transgenic cotton (Gossypium hirsutum L.). Plant Molecular Biology, 4, 566–567 [CrossRef] [PubMed].

    Google Scholar 

  • Pandeya D, López-Arredondo DL, Janga MR, Campbell LM, Estrella-Hernández, P, Bagavathiannan MV, Herrera-Estrella L, Rathore KS (2018) Selective fertilization with phosphate allows unhindered growth of cotton plants expressing the ptxD gene while suppressing weeds. Proceedings of the National Academy of Sciences of the United States of America. 115: 6946–6955. [CrossRef] [PubMed].

  • Pärn, J., Verhoeven, J. T., Butterbach-Bahl, K., Dise, N. B., Ullah, S., Aasa, A., Egorov, S., Espenberg, M., Järveoja, J., Jauhiainen, J., & Kasak, K. (2018). Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nature Communications, 9(1), 1135.

    Google Scholar 

  • Perdomo, C., Irisarri, P., & Ernst, O. (2009). Nitrous oxide emissions from an Uruguayan argiudoll under different tillage and rotation treatments. Nutrient Cycling in Agroecosystems, 84(2), 119–128.

    Google Scholar 

  • Pérez, T., Trumbore, S. E., Tyler, S. C., Matson, P. A., Ortiz-Monasterio, I., Rahn, T., & Griffith, D. W. (2001). Identifying the agricultural imprint on the global N2O budget using stable isotopes. Journal of Geophysical Research-Atmospheres, 106(D9), 9869–9878.

    Google Scholar 

  • Pfab, H., Palmer, I., Buegger, F., Fiedler, S., Müller, T., & Ruser, R. (2012). Influence of a nitrification inhibitor and of placed N-fertilization on N2O fluxes from a vegetable cropped loamy soil. Agriculture, Ecosystems and Environment, 150, 91–101.

    CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    CAS  Google Scholar 

  • Plouviez, M., Shilton, A., Packer, M. A., & Guieysse, B. (2019). Nitrous oxide emissions from microalgae: potential pathways and significance. Journal of Applied Phycology, 31(1), 1–8.

    CAS  Google Scholar 

  • Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D., Douglass, A. R., Fleming, E. L., Strahan, S. E., Steenrod, S. D., Søvde, O. A., & Isaksen, I. S. (2015). Measuring and modeling the lifetime of nitrous oxide including its variability. Journal of Geophysical Research-Atmospheres, 120(11), 5693–5705.

    CAS  Google Scholar 

  • Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326(5949), 123–125.

    CAS  Google Scholar 

  • Reich, P. B., & Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, 101(30), 11001–11006.

    CAS  Google Scholar 

  • Richardson, D. J., & Watmough, N. J. (1999). Inorganic nitrogen metabolism in bacteria. Current Opinion in Chemical Biology, 3, 207–219.

    CAS  Google Scholar 

  • Roussel-Delif, L., Tarnawski, S., Hamelin, J., Philippot, L., Aragno, M., & Fromin, N. (2005). Frequency and diversity of nitrate reductase genes among nitrate-dissimilating Pseudomonas in the rhizosphere of perennial grasses grown in field conditions. Microbial Ecology, 49, 63–72.

    CAS  Google Scholar 

  • Rugh, C. L., Wilde, H. D., Stack, N. M., Thompson, D. M., Summers, A. O., & Meagher, R. B. (1996). Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proceedings of the National Academy of Sciences of the United States of America, 93, 3182–3187 [CrossRef] [PubMed].

    CAS  Google Scholar 

  • Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F., & Munch, J. C. (2006). Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biology and Biochemistry, 38, 263–274.

    CAS  Google Scholar 

  • Saikawa, E., Prinn, R. G., Dlugokencky, E., Ishijima, K., Dutton, G. S., Hall, B. D., & Rigby, M. (2014). Global and regional emissions estimates for N2O. Atmospheric Chemistry and Physics, 14(9), 4617–4641.

    Google Scholar 

  • Shaviv, A. (2001). Advances in controlled-release fertilizers. Advances in Agronomy, 71, 1–49.

    CAS  Google Scholar 

  • Shcherbak, I., Millar, N., & Robertson, G. P. (2014). Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences, 111(25), 9199–9204.

    CAS  Google Scholar 

  • Shiro, Y., Fujii, M., Iizuka, T., Adachi, S., & Tsukamoto, K. (1995). Spectroscopic and kinetic studies on reaction of cytochrome P450nor with nitric oxide. Journal of Biological Chemistry, 270, 617–623.

    Google Scholar 

  • Signor, D., & Cerri, C. E. P. (2013). Nitrous oxide emissions in agricultural soils: a review. Pesquisa Agropecuária Tropical, 43(3), 322–338.

    Google Scholar 

  • Signor, D., et al. (2013). N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, 8, 1–9.

    Google Scholar 

  • Šimek, M., & Cooper, J. E. (2002). The influence of soil pH on denitrification, progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science, 53, 345–354.

    Google Scholar 

  • Singh, S., Sherkhane, P. D., Kale, S. P., & Eapen, S. (2011). Expression of a human cytochrome P4502E1 in Nicotiana tabacum enhances tolerance and remediation of gamma-hexachloro cyclohexane. New Biotechnology, 28, 423–429.

    CAS  Google Scholar 

  • Smith, K. (1997). The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils. Global Change Biology, 3(4), 327–338.

    CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, Mara FO, Rice C, Scholes B, Sirotenko O(2007) Agriculture in climate change: mitigation. In: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, (Editors B. Metz, OR. Davidson PR, Bosch R. Dave, and LA. Meyer), UK: Cambridge University Press, pp 498-540.

  • Smith, K. A., Mosier, A. R., Crutzen, P. J., & Winiwarter, W. (2012). The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth’s climate. Philosophical Transactions of the Royal Society, B: Biological Sciences, 367(1593), 1169–1174.

    CAS  Google Scholar 

  • Snyder, C. S. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133, 247–266.

    CAS  Google Scholar 

  • Stevens, R. J., & Laughlin, R. J. (1998). Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutrient Cycling in Agroecosystems, 52, 131–139.

    CAS  Google Scholar 

  • Syakila, A., & Kroeze, C. (2011). The global nitrous oxide budget revisited. Greenhouse Gas Measurement and Management, 1(1), 17–26.

    CAS  Google Scholar 

  • Tan, I. Y. S., et al. (2009). Single-event nitrous oxide losses under maize production as affected by soil type, tillage, rotation, and fertilization. Soil and Tillage Research, 102, 19–26.

    Google Scholar 

  • Thompson, R. L., Chevallier, F., Crotwell, A. M., Dutton, G., Langenfelds, R. L., Prinn, R. G., & Steele, L. P. (2014). Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion. Atmospheric Chemistry and Physics, 14(4), 1801–1817.

    Google Scholar 

  • Thomson, A. J. (2012). Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society Biological Sciences, 367, 1157–1168.

    CAS  Google Scholar 

  • Tian, H., Lu, C., Ciais, P., Michalak, A. M., Canadell, J. G., Saikawa, E., & Yang, J. (2016). The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 531(7593), 225.

    CAS  Google Scholar 

  • Treush, A. H., Leininger, S., Kletzin, A., Schuster, S. C., Klenk, H. P., & Schleper, C. (2005). Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology, 7, 1985–1995.

    Google Scholar 

  • United States Environmental Protection Agency (2018) Inventory of U.S. Greenhouse Gas Emissions and Sinks. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

  • Van Haren, J. L., Handley, L. L., Biel, K. Y., Kudeyarov, V. N., McLain, J. E., Martens, D. A., & Colodner, D. C. (2005). Drought-induced nitrous oxide flux dynamics in an enclosed tropical forest. Global Change Biology, 11(8), 1247–1257.

    Google Scholar 

  • Van Kessen, C., et al. (2013). Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Global Change Biology, 19, 33–44.

    Google Scholar 

  • Van Lent, J., Hergoualc’h, K., & Verchot, L. V. (2015). Reviews and syntheses: soil N2Oand NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis. Biogeosciences, 12(23), 7299–7313.

    Google Scholar 

  • Velthof, G. L., & Mosquera, J. (2011). The impact of slurry application technique on nitrous oxide emission from agricultural soils. Agriculture, Ecosystems andEnvironment, 140, 298–308.

    CAS  Google Scholar 

  • Vitousek, P. M. (1984). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65(1), 285–298.

    CAS  Google Scholar 

  • Vitousek, P. M., Menge, D. N., Reed, S. C., & Cleveland, C. C. (2013). Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society, B: Biological Sciences, 368(1621), 20130119.

    Google Scholar 

  • Wagner-Riddle, C., Congreves, K. A., Abalos, D., Berg, A. A., Brown, S. E., Ambadan, J. T., & Tenuta, M. (2017). Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles. Nature Geoscience, 10(4), 279–283.

    CAS  Google Scholar 

  • Wan, S., et al. (2012). Expression of the nos operon proteins from Pseudomonas stutzeri in transgenic plants to assemble nitrous oxide reductase. Transgenic Research, 21, 593–603.

    CAS  Google Scholar 

  • Weier, K. L., & Gilliam, J. W. (1986). Effect of acidity on denitrification and nitrous oxide evolution from Atlantic Coastal Plain soils. Soil Science Society of America Journal, 50, 202–1205.

    Google Scholar 

  • Werner, C., Butterbach-Bahl, K., Haas, E., Hickler, T., & Kiese, R. (2007). A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model. Global Biogeochemical Cycles, 21(3).

  • Wunsch, P., & Zumft, W. G. (2005). Functional domains of NosR, a novel transmembrane iron-sulfur flavoprotein necessary for nitrous oxide respiration. Journal of Bacteriology, 187, 1992–2001.

    CAS  Google Scholar 

  • Xu, R., Tian, H., Lu, C., Pan, S., Chen, J., Yang, J., & Zhang, B. (2017). Preindustrial nitrous oxide emissions from the land biosphere estimated by using a global biogeochemistry model. Climate of the Past, 13(7), 977–990.

    Google Scholar 

  • Ye, R. W., & Thomas, S. M. (2001). Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology, 4, 307–312.

    CAS  Google Scholar 

  • Yoshida, N., & Toyoda, S. (2000). Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature, 405, 330–334.

    CAS  Google Scholar 

  • Zaman, M., & Nguyen, M. L. (2010). Effect of lime or zeolite on N2O and N2 emissions from a pastoral soil treated with urine or nitrate-N fertiliser under field conditions. Agriculture Ecosystems and Environment, 136, 254–261.

    CAS  Google Scholar 

  • Zaman, M., Nguyen, M. L., Matheson, F., Blennerhassett, J. D., & Quin, B. F. (2007). Can soil amendments zeolite or lime shift the balance between nitrous oxide and dinitrogen emissions from pasture and wetland soils receiving urine or urea-N. Australian Journal of Soil Research, 45, 543–553.

    CAS  Google Scholar 

  • Zaman, M., Nguyen, M. L., & Saggar, S. (2008). N2O and N2 emissions from pasture and wetland soils with and without amendments of nitrate, lime and zeolite under laboratory condition. Australian Journal of Soil Research, 46, 526–534.

    CAS  Google Scholar 

  • Zanatta, J. A., et al. (2010). Nitrous oxide and methane fluxes in south Brazilian gleysol as affected by nitrogen fertilizers. Revista Brasileira de Ciência do Solo, 34, 1653–1665.

    CAS  Google Scholar 

  • Zhang, J., & Han, X. (2008). N2O emission from the semiarid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China. Atmospheric Environment, 42, 291–302.

    CAS  Google Scholar 

  • Zhao, X. J., Sampath, V., & Caughey, W. S. (1995). Cytochrome c oxidase catalysis of the reduction of nitric-oxide to nitrous-oxide. Biochemical and Biophysical Research Communications, 212, 1054–1060.

    CAS  Google Scholar 

  • Zumft, W. G., & Kroneck, P. M. H. (2007). Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Advances in Microbial Physiology, 52, 107–227.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouf Ahmad Bhat.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramzan, S., Rasool, T., Bhat, R.A. et al. Agricultural soils a trigger to nitrous oxide: a persuasive greenhouse gas and its management. Environ Monit Assess 192, 436 (2020). https://doi.org/10.1007/s10661-020-08410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08410-2

Keywords

Navigation