Abstract
Soil erosion affects agricultural production by reducing the area of rural properties and altering the dynamics of watersheds. Gullies are a complex and irregular type of erosion form that can reach large dimensions, and studying gullies to stabilize erosion processes is a challenge. This study aims to understand their environmental relationships as a basis for future research and to recover land degraded by soil erosion. We combined mapping techniques using geographic information system (GIS) with temporal evolution of land use and fractal dimensions of gullies using FracLac to determine the stability of gullies in a watershed in south Minas Gerais (Brazil). We used R software to apply linear regressions and tested the statistics to verify the compatibility of the model. Environmental characteristics of the watershed contribute to the formation of gullies, but human activities influence the deflagration of these features. The temporal evolution of the land use demonstrated that nearly 50% of the watershed was used as pastures throughout the years, which contributed to soil degradation. The evolution of the fractal dimension showed fluctuations over the years, indicating that the gullies are not stable. The regressions suggest that the vegetation, geology, land use, channel order, and curvature may influence the fractal dimensions of gullies. We concluded that human activity influences the evolution of gullies; the use of techniques such as vegetation measures can contribute to the stabilization of gullies. We also concluded that fractal analysis is an interesting tool for performing environmental evaluations of irregular and complex features, such as gullies.











Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ahammer, H., Heligeb, C. H., Dohrb, G., Weiss-Fuchsc, U., & Juchb, H. (2008). Fractal dimension of the choriocarcinoma cell invasion front. Physica D: Nonlinear Phenomena, 237(4), 446–453. https://doi.org/10.1016/j.physd.2007.09.016.
Alves, F. E. A., Neumann, R. (2017) Characterization of the rare earth element minerals in the pegmatites from the Volta Grande mine. In: VI Jornada do Programa de Capacitação Institucional - PCI/CETEM, 7p.
Anache, J. A. A., Wendland, E. C., Oliveira, P. T. S., Flanagan, D. C., & Nearing, M. A. (2017). Runoff and soil erosion plot-scale studies under natural rainfall: a meta-analysis of the Brazilian experience. Catena, 152, 29–39. https://doi.org/10.1016/j.catena.2017.01.003.
Anache, J. A. A., Flanagan, D. C., Srivastava, A., & Wendland, E. C. (2018). Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. Science of the Total Environment, 622-623, 140–151. https://doi.org/10.1016/j.scitotenv.2017.11.257.
Antoneli, V., Rebinski, E. A., Bednarz, J. A., Rodrigo-Comino, J., Keesstra, S. D., Cerdà, A., & Fernández, M. P. (2018). Soil erosion induced by the introduction of new pasture species in a faxinal farm of southern Brazil. Geosciences, 8, 166. https://doi.org/10.3390/geosciences8050166.
Arabameri, A., Rezaei, K., Pourghasemi, H. R., Lee, S., & Yamani, M. (2018). GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique. Environmental Earth Sciences, 77(17), 628. https://doi.org/10.1007/s12665-018-7808-5.
Ávila, C. A., Valença, J. G., Moura, C. A. V., Pereira, R. M., & Klein, V. C. (2003). Geoquímica e idade do tonalito/trondhjemito Cassiterita, borda meridional do cráton São Francisco, Minas Gerais, Brasil. Arquivos do Museu Nacional, Rio de Janeiro, 61(4), 267–284.
Ávila, C. A., Teixeira, W., Cordani, U. G., Barrueto, H. R., Pereira, R. M., Martins, V. T. S., & Dunyi, L. (2006). The Glória quartz-monzodiorite: isotopic and chemical evidence of arc-related magmatism in the central part of the paleoproterozoic Mineiro belt, Minas Gerais State, Brazil. Anais da Academia Brasileira de Ciências, 78(3), 543–556.
Bacchi, O. O. S., & Reichardt, K. (1993). Fractal geometry in soil physics. Scientia Agricola, Piracicaba, 50(2), 321–325.
Benjamin, J., Walker, D., Mylläri, A., & Mylläri, T. (2018). On the applicability of pairwise separations method in astronomy: Influence of the noise in data. Mathematics in Computer Science, 13(1-2), 5–10. https://doi.org/10.1007/s11786-018-0373-1.
Casalí, J., Giménez, R., & Campo-Bescós, M. A. (2015). Gully geometry: what are we measuring? Soil, 1, 509–513. https://doi.org/10.5194/soil-1-509-2015.
Castillo, C., Taguas, E. V., Zarco-Tejada, P., James, M. R., & Gómez, J. A. (2014). The normalized topographic method: Na automated procedure for gully mapping using GIS. Earth Surface Processes and Landforms, 39(15), 2002–2015. https://doi.org/10.1002/esp.3595.
CBH - Comitê da Bacia Hidrográfica do Rio Grande (Rio Grande River Basin Committee) (2019) Bacia do Rio Grande. http://cbhgrande.org.br/bacia.
CEMIG - Companhia Energética de Minas Gerais (Energy Company of Minas Gerais) (2019) Grande river basin. http://www.cemig.com.br.
Cerdà, A., Rodrigo-Comino, J., Novara, A., Eric Charles Brevik, E. C., Ali Reza Vaezi, A. R., Pulido, M., et al. (2018). Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Progress in Physical Geography, 42(2), 202–219. https://doi.org/10.1177/0309133318758521.
Chaplot, V. (2013). Impact of terrain attributes, parent material and soil types on gully erosion. Geomorphology, 186, 1–11. https://doi.org/10.1016/j.geomorph.2012.10.031.
Chen, Y. G. (2019). The solutions to uncertainty problem of urban fractal dimension calculation. Entropy, 21, 453.
Chen, Y. G. (2020) Fractal modeling and fractal dimension description of urban morphology. Cornell University. https://arxiv.org/abs/1809.05810.
CODEMIG - Companhia de Desenvolvimento Econômico de Minas Gerais (Company of Economic Development of Minas Gerais), 2013. Carta Geológica. Folha SF.23-X-C-I LAVRAS. Escala 1:100,000. http://www.portalgeologia.com.br.
Dantas, A. A. A., Carvalho, L. G., & Ferreira, E. (2007). Classificação e tendências climáticas em Lavras, MG. Ciência e Agrotecnologia, Lavras, 31(6), 1862–1866.
Denef, K., Six, J., Merckx, R., & Paustian, K. (2002). Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant and Soil, 246, 185–200.
Deng, Q., Miao, F., Zhang, B., Luo, M., Liu, H., Liu, X., Qin, F., & Liu, G. (2015). Planar morphology and controlling factors of the gullies in the Yuanmou Dry-hot Valley based on field investigation. Journal of Arid Land, 7(6), 778–793. https://doi.org/10.1007/s40333-015-0135-8.
Dube, H. B., Mutema, M., Muchaonyerwa, P., Poesen, J., & Chaplot, V. (2020). A global analysis of the morphology of linear erosion features. Catena, 190, 104542. https://doi.org/10.1016/j.catena.2020.104542.
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (Brazilian Agricultural Research Corporation). (2006a). Sistema brasileiro de classificação de solos (2ª ed.306p). Rio de Janeiro: Centro Nacional de Pesquisa de Solos.
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (Brazilian Agricultural Research Corporation) (2006b) Levantamento de reconhecimento de média intensidade dos solos da Zona Campos das Vertentes – MG. Boletim de Pesquisa e Desenvolvimento 96. EMBRAPA Solos, Rio de Janeiro, 326p.
FAO - Food and Agriculture Organization of the United Nations and ITPS - Intergovernmental Technical Panel on Soils (2015) Status of the World’s Soil Resources (SWSR) - Main Report. 650p.
Feder, J. (1988) Fractals (Physics of solids and liquids). Plenum Press. 283p.
Ferreira, V. M. (2005) Voçorocas no município de Nazareno, MG: Origem, uso da terra e atributos do solo. Dissertation (Masters). Federal University of Lavras.
Ferreira, R. R. M. (2008) Qualidade física de cambissolos sobre dois materiais de origem com pastagens extensivas. Thesis. Londrina State University.
Ferreira, R. R. M., Ferreira, V. M., Tavares Filho, J., Ralisch, R. (2010) Estabilidade física de solo sob diferentes manejos de pastagem extensiva em cambissolo. Semina: Ciências Agrárias, Londrina, 31 (3), 531-538. doi: 10.5433/1679-0359.2010v31n3p531.
Ferreira, V. M., Curi, N., Silva, M. L. N., & Hoffmann, A. (2011). Influência antrópica e atributos de solo: Inter-relações em ambientes de voçorocas na mesorregião Campos das Vertentes, MG. Geografia, Rio Claro., 36(1), 209–219.
Feurer, D., Planchon, O., El Maaoui, M. A., Slimane, A. B., Boussema, M. R., Pierrot-Deseiligny, M., & Raclot, D. (2018). Using kites for 3-D mapping of gullies at decimeter-resolution over several square kilometres: a case study on the Kamech catchment, Tunisia. Natural Hazards and Earth System Sciences, 18, 1567–1582. https://doi.org/10.5194/nhess-18-1567-2018.
Flores, J. C. (2018). Decreasing fractal dimensions as a strategy for oceanic wildlife conservation: application to species with large migration patterns. Ecological Modelling, 384, 30–33. https://doi.org/10.1016/j.ecolmodel.2018.06.001.
Gale, W. J., Cambardella, C. A., & Bailey, T. B. (2000). Root-derived carbon and the formation and stabilization of aggregates. Soil ScienceSociety of America Journal, 64, 201–207. https://doi.org/10.2136/sssaj2000.641201x.
Garritano, F. N., Loureiro, H. A. S., Santos, D. S., Martins, V., Guerra, A. J. T. (2018) Monitoramento, mapeamento e caracterização de voçoroca através de imagens do Google Earth Pro e uso de drone. In: Anais – IV Jornada de Geotecnologias do Estado do Rio de Janeiro. Seropédica, RJ. 426p.
Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. European Journal of Epidemiology, 31, 337–350. https://doi.org/10.1007/s10654-016-0149-3.
Guadagnini, A., San José Martínez, F., & Pachepsky, Y. A. (2013). Scaling in soil and other complex porous media. Vadose Zone Journal, 12(3), 1–4. https://doi.org/10.2136/vzj2013.05.0092.
Guerra, A. J. T., Fullen, M. A., Jorge, M. C. O., Bezerra, J. F. R., & Shokr, M. S. (2017). Slope processes, mass movement and soil erosion: a review. Pedosphere, 27(1), 27–41. https://doi.org/10.1016/S1002-0160(17)60294-7.
Guerra, A. J. T., Fullen, M. A., Bezerra, J. F. R., Jorge, M. C. O. (2018) Gully erosion and land degradation in Brazil: a case study from São Luís Municipality, Maranhão State, 195-216. In: Dagar, J. C., Singh, A. K. (eds.). 2018. Ravine lands: Greening for livelihood and environment security. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-10-8043-2_8.
Haregeweyn, N., Tsunekawa, A., Poesen, J., Tsubo, M., Meshesha, D. T., Fenta, A. A., Nyssen, J., & Adgo, E. (2017). Comprehensive assessment of soil erosion risk for better land use planning in river basins: case study of the Upper Blue Nile River. Science of the Total Environment, 574, 95–108. https://doi.org/10.1016/j.scitotenv.2016.09.019.
Horta, I. M. F. (2006) Levantamento dos solos e ocupação da superfície do município de Nazareno, MG. Dissertation (Masters). Federal University of Lavras.
Horta, I. M. F., Pereira, J. A. A., Marques, J. J., & De Carvalho, L. M. T. (2009). Levantamento de reconhecimento com apoio digital dos solos do município de Nazareno-MG. Ciência e Agrotecnologia, 33, 1940–1947.
INMET - Instituto Nacional de Meteorologia (National Institue of Meteorology) (2017) Estação chuvosa em Minas Gerais. http://www.inmet.gov.br.
Iserloh, T., Wirtz, S., Seeger, M., Marzolff, I., & Ries, J. B. (2017). Erosion processes on diferente relief units: The relationship of form and process. Cuadernos de Investigación Geográfica, 43, 171. https://doi.org/10.18172/cig.3206.
Lee, T. D. (1988). Symmetries, asymmetries, and the world of particles. Seattle and London: University of Washington Press.
Li, Z., & Fang, H. (2016). Impacts of climate change on water erosion: A review. Earth-Science Reviews, 163, 94–117. https://doi.org/10.1016/j.earscirev.2016.10.004.
Machado, F. S., Fontes, M. A. L., Santos, R. M., Garcia, P. O., & Farrapo, C. L. (2016). Tree diversity of small forest fragments in ecotonal regions: why must these fragments be preserved? Biodiversity and Conservation, 25(3), 525–537. https://doi.org/10.1007/s10531-016-1063-4.
Mandelbrot, B. B. (1982). The fractal geometry of nature (468p). Freeman and Company: Updated and augmented. W.H.
Mitas, L., & Mitasova, H. (1998). Distributed soil erosion simulation for effective erosion prevention. Water Resources Research, 34(3), 505–516.
Morais, P. A., Oliveira, E. A., Araújo, N. A. M., Herrmann, H. J., & Andrade Jr., J. S. (2011). Fractality of eroded coastlines of correlated landscapes. Physical Review E, 84(1 Pt 2), 016102. https://doi.org/10.1103/PhysRevE.84.016102.
Nazari Samani, A., Chen, Q., Khalighi, S., Wasson, R. J., & Rahdari, M. R. (2016). Assessment of land use impacto n hydraulic threshold conditions for gully head cut initiation. Hydrology and Earth System Sciences, 20, 3005–3012. https://doi.org/10.5194/hess-20-3005-2016.
Nunes, L. C. (2007) Geocronologia, geoquímica isotópica e litoquímica do plutonismo dioríticogranítico entre Lavras e Conselheiro Lafaiete: implicações para a evolução paleoproterozóica da parte central do Cinturão Mineiro. Dissertation (Masters). University of São Paulo.
Oliveira, B. E. N., Matricardi, E. A. T., Chaves, H. M. L., & Bias, E. S. (2013). Identificação dos processos erosivos lineares no distrito federal através de fotografias aéreas e geoprocessameto. Geociências, 32(1), 152–165.
Oost, K. V., Govers, G., Cerdan, O., Thauré, D., Rompaey, A. V., Steegen, A., Nachtergaele, J., Takken, I., & Poesen, J. (2005). Spatially distributed data for erosion model calibration and validation: the Ganspoel and Kinderveld datasets. Catena, 61, 105–121. https://doi.org/10.1016/j.catena.2005.03.001.
Paixão, F. J. R., Andrade, A. R. S., Azevedo, C. A. V., Lima, V. L. A., & Dantas Neto, J. (2009). Uso da aproximação fractal no ajuste da curva de retenção de água no solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 13(3), 282–288.
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012.
Pantic, I., Petrovic, D., Paunovic, J., Vucevic, D., Radosavljevic, T., & Pantic, S. (2016). Age-related reduction of chromatin fractal dimension in toluidine blue – stained hepatocytes. Mechanisms of Ageing and Development, 157, 30–34. https://doi.org/10.1016/j.mad.2016.07.002.
Poesen, J., Govers, G. (1990) Gully erosion in the loam belt of Belgium: Typology and control measures. 513-530. In: Soil erosion on agricultural land. Proceedings of a Workshop Sponsored by the British Geomorphological Research Group, Coventry, UK. https://www.cabdirect.org/cabdirect/abstract/19911957571.
Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: importance and research needs. Catena, 50, 91–133. https://doi.org/10.1016/S0341-8162(02)00143-1.
Pourghasemi, H. R., Yousefi, S., Kornejady, A., & Cerdà, A. (2017). Performance assessment of individual and esemble data-mining techniques for gully erosion modeling. Science of the Total Environment, 609, 764–755. https://doi.org/10.1016/j.scitotenv.2017.07.198.
Puget, P., & Drinkwater, L. E. (2001). Short-term dynamics of root- and shoot-derived carbon from a leguminous green manure. Soil Science Society of America Journal, 65, 771–779. https://doi.org/10.2136/sssaj2001.653771x.
Quéméneur, J. J. G. (1987). Petrographyof the pegmatites from Rio das Mortes valley, southeast Minas Gerais, Brazil. Revista Brasileira de Geociencias, 17(4), 595–600.
Quéméneur, J. J. G., & Noce, C. M. (2000). Geochemistry and petrology of felsic and mafic suites related to the Paleoproterozoic transamazonian orogeny in Minas Gerais, Brazil. Revista Brasileira de Geociencias, 30(1), 087–090.
Real, L. S. C., Crestana, S., Ferreira, R. R. M., Sígolo, J. B., & Rodrigues, V. G. S. (2020). Proposition for a new classification of gully erosion using multifractal and lacunarity analysis: a complex of gullies in the Palmital stream watershed, Minas Gerais (Brazil). Catena, 186, 104377. https://doi.org/10.1016/j.catena.2019.104377.
Manoel, J. L, Rocha, P. C. (2014) Composição hierárquica dos canais fluviais das bacias hidrográficas dos rios Aguapeí e Peixe. Revista Geonorte, 10 (1), 228-232.
Rodrigues, A. C. P. (2000) Metamorphic mafic and ultramafic rocks of the Barbacena Greenstone Belt in the Itutinga area, MG. Dissertation (Masters). University of Campinas.
Rollin, G., Lages, J., & Shepelyansky, D. L. (2016). Fractal structures for the Jacobi Hamiltonian of restricted three-body problem. New Astronomy, 47, 97–104. https://doi.org/10.1016/j.newast.2016.02.010.
Rotta, C. M. S., & Zuquette, L. V. (2013). Erosion feature reclamation in urban areas: typical unsuccessful examples from Brazil. Environmental Earth Sciences, 72, 535–555. https://doi.org/10.1007/s12665-013-2974-y.
Sampaio, L. F. (2014) Estudo geológico-geotécnico dos processos erosivos e proposta de macrodrenagem: voçoroca do córrego do Cravo (Nazareno-MG). Dissertation (Masters). University of São Paulo.
Sampaio, L. F., Oliveira, M. P. P., Gimenes, F. B. Q., Rodrigues, V. G. S., Pejon, O. J. (2013) Utilização de SIG e índices morfométricos para estudo dos processos erosivos em uma bacia do município de Nazareno/MG. In: Proceedings of 14° Congresso Brasileiro de Geologia de Engenharia e Ambiental, Rio de Janeiro. 9p.
Sampaio, L. F., Oliveira, M. P. P., Cassaro, R., Rodrigues, V. G. S., Pejon, O. J., Sígolo, J. B., & Ferreira, V. M. (2016). Gully erosion, land uses, water and soil dynamics: a case study of Nazareno (Minas Gerais, Brazil). Dyna, 83(199), 198–206. https://doi.org/10.15446/dyna.v83n199.54843.
Sampaio, L. F., Rodrigues, V. G. S., Bressiani, D. A., & Ferreira, R. R. M. (2017). Hydrologic and hydraulic simulations for use in macrodrainage designs for gully management and recovery. Dyna, 84(202), 129–136. https://doi.org/10.15446/dyna.v84n202.61254.
Sampaio, L. F., Crestana, S., Rodrigues, V. G. S. (2018) Study of gully erosion in south Minas Gerais (Brazil) using fractal and multifractal analysis. In: Shakoor, A., Cato, K. (eds.), IAEG/AEG Annual Meeting Proceedings, San Francisco, California - Volume 6, https://doi.org/10.1007/978-3-319-93142-5_30.
Santos, C. A., & Sobreira, F. G. (2008). Análise morfométrica como subsídio ao zoneamento territorial: O caso das bacias do Córrego Carioca, Córrego do Bação e Ribeirão Carioca na região do Alto do Rio das Velhas-MG. Revista Escola de Minas, 61(1), 77–85.
Santos, J. C. N., Andrade, E. M., Medeiros, P. H. A., Guerreiro, M. J. S., & Palácio, H. A. Q. (2017). Land use impact on soil erosion at different scales in the Brazilian semi-arid. Revista Ciência Agronômica, 48(2), 251–260. https://doi.org/10.5935/1806-6690.20170029.
Schertzer, D., & Lovejoy, S. (1983). The dimension and intermittency of atmospheric dynamics. Turbulent Shear Flows, 4, 7–33. https://doi.org/10.1007/978-3-642-69996-2_2.
Silva, A. C. (1990) Relação entre voçorocas e solos na região de Lavras (MG). Dissertation (Masters). Federal University of Lavras.
Tedesco, A., Antunes, A. F. B., & Oliani, L. O. (2014). Gully erosion detection by hierarchical classification and tree decision. Boletim de Ciências Geodésicas, 20(4), 1005–1026.
Teixeira, W., Ávila, C. A., & Nunes, L. C. (2008). Nd-Sr isotopic geochemistry and U-Pb geochronology of the Fé granitic gneiss and Lajedo granodiorite: implications for paleoproterozoic evolution of the mineiro belt, southern São Francisco Craton, Brazil. Geologia USP - Série Científica., 8(1), 53–74.
Toledo, C. L. B. (2002) Evolução geológica das rochas máficas e ultramáficas no Greenstone Belt Barbacena, região de Nazareno, MG. 274 f. Thesis. University of Campinas.
Tseng, C. L., Alves, M. C., Milori, D. M. B. P., & Crestana, S. (2018). Geometric characterization of soil structure through unconventional analytical tools. Soil & Tillage Research, 181, 37–45. https://doi.org/10.1016/j.still.2018.03.018.
Vanmaercke, M., Poesen, J., Mele, B. V., Demuzere, M., Bruynseels, A., Golosov, V., Bezerrea, J. F. R., Bolysov, S., Dvinkih, A., Frankl, A., Fuseina, Y., Guerra, A. J. T., Haregeweyn, N., Ionita, I., Imwangana, F. M., Moeyersons, J., Moshe, I., Nazari Samani, A., Niacsu, L., Nyssen, J., Otsuki, Y., Radoane, M., Rysin, I., Ryzhov, Y. V., & Yermolaev, O. (2016). How fast do gully headcuts retreat? Earth-Science Reviews, 154, 336–355. https://doi.org/10.1016/j.earscirev.2016.01.009.
Vasconcelos, F. F., Ávila, C. A., Neumann, R., Teixeira, W., Bongiolo, E. M., Barbosa, N., Camara, B. O., Menezes, V. H. R., & Cunha, F. C. M. (2017). Ortognaisse Morro do Resende: Mineralogia, petrografia, geoquímica e geocronologia. Geologia USP - Série Científica, 17(1), 143–164. https://doi.org/10.11606/issn.2316-9095.v17-285.
Vente, J., Poesen, J., Verstraeten, G., Rompaey, A. V., & Govers, G. (2008). Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Global and Planetary Change, 60, 393–415. https://doi.org/10.1016/j.gloplacha.2007.05.002.
Vestena, L. R., & Kobiyama, M. (2010). A geometria fractal da rede de drenagem da bacia hidrográfica do Caeté, Alfredo Wagner-SC. Revista Árvore, 34(4), 661–668.
Vidal Vázquez, E., Miranda, J. G. V., Alves, M. C., & Paz González, A. (2006). Effect of tillage on fractal indices describing soil surface microrelief of a Brazilian Alfisol. Geoderma, 134, 428–439. https://doi.org/10.1016/j.geoderma.2006.03.012.
Villela, J. M. (2019) Desenvolvimento e avaliação de traçador de erosão hídrica contend terras raras como assinatura química. Thesis. University of São Paulo.
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: context, process, and purpose. The American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108.
Wilson, M. J. (2019). The importance of parent material in soil classification: a review in a historical context. Catena, 182, 104131. https://doi.org/10.1016/j.catena.2019.104131.
Wirtz, S., Iserloh, T., Rock, G., Hansen, R., Marzen, M., Seeger, M., Betz, S., Remke, A., Wengel, R., Butzen, V., Ries, J. B. (2012) Soil erosion on abandoned land in Andalusia: a comparison of interrill- and rill erosion rates. International Scholarly Research Network – ISRN Soil ScienceI, 16p. doi:https://doi.org/10.5402/2012/730870
Xiong, M., Sun, R., & Chen, L. (2018). Effects of soil conservation techniques on water erosion control: A global analysis. Science of the Total Environment, 645, 753–760. https://doi.org/10.1016/j.scitotenv.2018.07.124.
Acknowledgments
We acknowledge the Brazilian Agricultural Research Corporation for scientific support.
Funding
The study was financially supported by the National Council for Scientific and Technological Development (CNPq) (process numbers: 141835/2015-0 and 420740/2018-0).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Real, L.S.C., Crestana, S., Ferreira, R.R.M. et al. Evaluation of gully development over several years using GIS and fractal analysis: a case study of the Palmital watershed, Minas Gerais (Brazil). Environ Monit Assess 192, 434 (2020). https://doi.org/10.1007/s10661-020-08362-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-020-08362-7

