Skip to main content

Advertisement

Log in

Phosphorus removal from aqueous solution using modified walnut and almond wooden shell and recycling as soil amendment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Modified walnut wooden shell (MWWS) and almond wooden shell (MAWS) as novel anion exchangers were used to remove phosphorus (P) from aqueous solution. The raw and modified agricultural wastes were characterized using total N, total P, FT-IR spectra, SEM, BET, and EXD analysis. The effect of different parameters such as pH (4 to 8), contact time (5 to 600 min), and adsorbent dosage (1 to 8 g L−1) on P adsorption was investigated. Adsorption of P onto MWWS and MAWS was studied using the batch technique with different concentration of P (5 to 200 mg L−1) at 25 ± 2 °C. The P adsorption isotherms were fitted with the Freundlich and Langmuir equations. The k and n values were 1.57 mg g−1 and 1.88 for MWWS and 1.91 mg g−1 and 2.24 for MAWS, respectively. The maximum P adsorption capacities for MWWS and MAWS were 22.73 and 14.71 mg g−1, respectively. The desorption-regeneration experimental results indicated about 4% and 3% reductions in MWWS and MAWS P adsorption efficiency after four consecutive regeneration cycles, respectively. The data well fitted with Pseudo-second-order kinetic model (R2 ≥ 0.99), indicating that chemical interactions dominate the P adsorption process. Incubation studies showed the rate of P release in treated soil with P-loaded modified biosorbents was higher than control. Therefore, the MWWS and MAWS can potentially be used as an excellent adsorbent in remediation of contaminated waters by P and then recycled to soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdelhay, A., Al Bsoul, A., Al-Othman, A., Al-Ananzeh, N. M., Jum'h, I., & Al-Taani, A. A. (2018). Kinetic and thermodynamic study of phosphate removal from water by adsorption onto (Arundo donax) reeds. Adsorption Science & Technology, 36(1–2), 46–61.

    CAS  Google Scholar 

  • Anirudhan, T. S., Noeline, B. F., & Manohard, D. M. (2006). Phosphorus removal from wastewater using a weak anion exchanger prepared from a lignocellulosic. Environmental Science & Technology, 40, 2740–2745.

    CAS  Google Scholar 

  • Aswin Kumar, I., & Viswanathan, N. (2018). Development and reuse of amine-grafted chitosan hybrid beads in the retention of nitrate and phosphate. Journal of Chemical & Engineering Data, 63(1), 147–158.

    CAS  Google Scholar 

  • Banu, H. T., & Meenakshi, S. (2017). One pot synthesis of chitosan grafted quaternized resin for the removal of nitrate and phosphate from aqueous solution. International Journal of Biological Macromolecules, 104, 1517–1527.

    CAS  Google Scholar 

  • Banu, H. A. T., Karthikeyan, P., & Meenakshi, S. (2019). Comparative studies on revival of nitrate and phosphate ions using quaternized corn husk and jackfruit peel. Bioresource Technology Reports, 8, 100331.

    Google Scholar 

  • Baral, S. S., Das, S. N., Chaudhury, G. R., Swamy, Y. V., & Rath, P. (2008). Adsorption of Cr (VI) using thermally activated weed Salvinia cucullata. Chemical Engineering Journal, 139(2), 245–255.

    CAS  Google Scholar 

  • Bawiec, A. (2019). Efficiency of nitrogen and phosphorus compounds removal in hydroponic wastewater treatment plant. Environmental Technology, 40(16), 2062–2072.

    CAS  Google Scholar 

  • Benyoucef, S., & Amrani, M. (2011). Removal of phosphorus from aqueous solutions using chemically modified sawdust of Aleppo pine (Pinus halepensis Miller): Kinetics and isotherm studies. Environmentalist, 31(3), 200–207.

    Google Scholar 

  • Biswas, B. K., Inoue, K., Ghimire, K. N., Ohta, S., Harada, H., Ohto, K., & Kawakita, H. (2007). The adsorption of phosphate from an aquatic environment using metal-loaded orange waste. Journal of Colloid and Interface Science, 312(2), 214–223.

    CAS  Google Scholar 

  • Boeykens, S. P., Piol, M. N., Legal, L. S., Saralegui, A. B., & Vázquez, C. (2017). Eutrophication decrease: Phosphate adsorption processes in presence of nitrates. Journal of Environmental Management, 203, 888–895.

    CAS  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464–465.

    Google Scholar 

  • Bozorgpour, F., Ramandi, H. F., Jafari, P., Samadi, S., Yazd, S. S., & Aliabadi, M. (2016). Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads. International Journal of Biological Macromolecules, 93, 557–565.

    CAS  Google Scholar 

  • Cao, W., Dang, Z., Zhou, X. Q., Yi, X. Y., Wu, P. X., Zhu, N. W., & Lu, G. N. (2011). Removal of sulphate from aqueous solution using modified rice straw. Carbohydrate Polymers, 85, 571–577.

    CAS  Google Scholar 

  • Cao, W., Dang, Z., Yuan, B. L., Shen, C. H., Kan, J., & Xue, X. L. (2014). Sorption kinetics of sulphate ions on quaternary ammonium-modified rice straw. Journal of Industrial and Engineering Chemistry, 20(4), 2603–2609.

    CAS  Google Scholar 

  • Carvalho, W. S., Martins, D. F., Gomes, F. R., Leite, I. R., da Silva, L. G., Ruggiero, R., & Richter, E. M. (2011). Phosphate adsorption on chemically modified sugarcane bagasse fibres. Biomass and Bioenergy, 35(9), 3913–3919.

    CAS  Google Scholar 

  • Chen, S., Yue, Q., Gao, B., & Xu, X. (2010). Equilibrium and kinetic adsorption study of the adsorptive removal of Cr (VI) using modified wheat residue. Journal of Colloid and Interface Science, 349(1), 256–264.

    CAS  Google Scholar 

  • Chu, L.-Q., Masyuko, R., Sweedler, J. V., & Bohn, P. W. (2010). Base-induced delignification of miscanthus×giganteus studied by three-dimensional confocal Raman imaging. Bioresource Technology, 101(13), 4919–4925.

    CAS  Google Scholar 

  • Cui, X., Li, H., Yao, Z., Shen, Y., He, Z., Yang, X., Ng, H. Y., & Wang, C. H. (2019). Removal of nitrate and phosphate by chitosan composited beads derived from crude oil refinery waste: Sorption and cost-benefit analysis. Journal of Cleaner Production, 207, 846–856.

    CAS  Google Scholar 

  • De Quadros Melo, D., De Oliveira Sousa Neto, V., De Freitas Barros, F. C., Raulino, G. S. C., Vidal, C. B., & Do Nascimento, R. F. (2016). Chemical modifications of lignocellulosic materials and their application for removal of cations and anions from aqueous solutions. Journal of Applied Polymer Science, 133(15).

  • Farhan, A. M., Salem, N. M., Al-Dujaili, A. H., & Awwad, A. M. (2012). Biosorption studies of Cr (VI) ions from electroplating wastewater by walnut shell powder. American Journal of Environmental Science and Engineering, 2(6), 188–195.

    Google Scholar 

  • Feizi, M., & Jalali, M. (2016). Sorption of aquatic phosphorus onto native and chemically-modified plant residues: Modeling the isotherm and kinetics of sorption process. Desalination and Water Treatment, 57(7), 3085–3097.

    CAS  Google Scholar 

  • Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analysis. USDA Agricultural Research Service. Handbook number 379. US Department of Agriculture. Superintendent of Documents, US Government Printing Office, Washington, DC.

  • Golie, W. M., & Upadhyayula, S. (2017). An investigation on biosorption of nitrate from water by chitosan based organic-inorganic hybrid biocomposites. International Journal of Biological Macromolecules, 97, 489–502.

    CAS  Google Scholar 

  • Gupta, P. K., Raghunath, S. S., Prasanna, D. V., Venkat, P., Shree, V., Chithananthan, C., Choudhary, S., Surender, K., & Geetha, K. (2019). An update on overview of cellulose, its structure and applications. In Pascual, A. R., & Martín, M. E (Ed.), Cellulose (pp. 846–1297). IntechOpen.

  • Hena, S., Atikah, S., & Ahmad, H. (2015). Removal of phosphate ion from water using chemically modified biomass of sugarcane bagasse. The International Journal Of Engineering And Science, 4, 51–62.

    Google Scholar 

  • Hergert, H. (1960). Infrared spectra of lignin and related compounds. II. Conifer lignin and model compounds. Journal of Organic Chemistry, 25, 405–413.

    CAS  Google Scholar 

  • Hesse, P. R., & Hesse, P. R. (1971). A textbook of soil chemical analysis. London: Murray.

    Google Scholar 

  • Ho, Y. S., McKay, G., Wase, D. A. J., & Forster, C. F. (2000). Study of the sorption of divalent metal ions on to peat. Adsorption Science & Technology, 18(7), 639–650.

    CAS  Google Scholar 

  • Ismail, Z. (2012). Kinetic study for phosphate removal from water by recycled date-palm wastes as agricultural by-products. International Journal of Environmental Studies, 69(1), 135–149.

    CAS  Google Scholar 

  • Jyothi, M. D., Kiran, K. R., & Ravindhranath, K. (2012). Phosphate pollution control in waste waters using new biosorbents. International Journal of. Water Resources and Environmental Engineering, 4(4), 73–85.

    Google Scholar 

  • Karadag, D., Koc, Y., Turan, M., & Ozturk, M. (2007). A comparative study of linear and non-linear regression analysis for ammonium exchange by clinoptilolite zeolite. Journal of Hazardous Materials, 144(1–2), 432–437.

    CAS  Google Scholar 

  • Kinniburgh, D. G. (1985). ISOTHERM. A computer program for analyzing adsorption data. British Geological Survey, Wallingford.

  • Krishnan, K. A., & Haridas, A. (2008). Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. Journal of Hazardous Materials, 152(2), 527–535.

    CAS  Google Scholar 

  • Kumar, P., Sudha, S., Chand, S., & Srivastava, V. C. (2010). Phosphate removal from aqueous solution using coir pith activated carbon. Separation Science and Technology, 45(10), 1463–1470.

    CAS  Google Scholar 

  • Lalley, J., Han, C., Li, X., Dionysiou, D. D., & Nadagouda, M. N. (2016). Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests. Chemical Engineering Journal, 284, 1386–1396.

    CAS  Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221–2295.

    CAS  Google Scholar 

  • Li, R. H., Wang, J. J., Zhou, B. Y., Awasthi, M. K., Ali, A., Zhang, Z. Q., Gaston, L. A., Lahori, A. H., & Mahar, A. (2016). Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Science of the Total Environment, 559, 121–129.

    CAS  Google Scholar 

  • Li, B., Boiarkina, I., Young, B., Yu, W., & Singhal, N. (2018). Prediction of future phosphate rock: A demand based model. Journal of Environmental Informatics, 1, 41–53.

    Google Scholar 

  • Li, J., Li, B., Huang, H., Lv, X., Zhao, N., Guo, G., & Zhang, D. (2019). Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Science of the Total Environment, 687, 460–469.

    CAS  Google Scholar 

  • Mahaninia, M. H., & Wilson, L. D. (2016). Cross-linked chitosan beads for phosphate removal from aqueous solution. Journal of Applied Polymer Science, 133(5).

  • Mezenner, N. Y., & Bensmaili, A. (2009). Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. The Chemical Engineering Journal, 147(2–3), 87–96.

    CAS  Google Scholar 

  • Miranda, K. M., Espey, M. G., & Wink, D. A. (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5(1), 62–71.

    CAS  Google Scholar 

  • Mor, S., Chhoden, K., & Ravindra, K. (2016). Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. Journal of Cleaner Production, 129, 673–680.

    CAS  Google Scholar 

  • Motsara, M. R., & Roy, R. N. (2008). Guide to laboratory establishment for plant nutrient analysis (Vol. 19). Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Murphy, J. A. M. E. S., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    CAS  Google Scholar 

  • Nakanishi, K. (1962). Infrared absorption spectroscopy—Practical. Tokyo: Nankodo Company Ltd.

    Google Scholar 

  • Nguyen, T. A. H., Ngo, H. H., Guo, W., & Nguyen, T. V. (2012). Phosphorus removal from aqueous solution by agricultural by-products. Journal of Water Sustainability, 2(3), 193–207.

    CAS  Google Scholar 

  • Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Lee, D. J., Nguyen, P. D., & Bui, X. T. (2014). Modification of agricultural waste/by-products for enhanced phosphate removal and recovery. Bioresource Technology, 196, 750–762.

    Google Scholar 

  • Oladoja, N. A., Adelagun, R. O. A., Ahmad, A. L., & Ololade, I. A. (2017). Green reactive material for phosphorus capture and remediation of aquaculture wastewater. Process Safety and Environmental Protection, 105, 21–31.

    CAS  Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, I. A. (1954). Estimation of available phosphorus in soil by extraction with sodium bicarbonate (p. 24). Washington, D.C.: Department Agriculture.

    Google Scholar 

  • Orlando, U. S., Baes, A. U., Nishijima, W., & Okada, M. (2002). A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials. Bioresource Technology, 83(3), 195–198.

    CAS  Google Scholar 

  • Pirayesh, H., Khazaeian, A., & Tabarsa, T. (2012). The potential for using walnut (Juglans regial.) shell as a raw material for wood-based particle board manufacturing. Composites Part B: Engineering, 43, 3276–3280.

    CAS  Google Scholar 

  • Qiao, H., Mei, L., Chen, G., Liu, H., Peng, C., Ke, F., Hou, R., Wan, X., & Cai, H. (2019). Adsorption of nitrate and phosphate from aqueous solution using amine cross-linked tea wastes. Applied Surface Science, 483, 114–122.

    CAS  Google Scholar 

  • Reddy, N., & Yang, Y. (2009). Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource Technology, 100(14), 3563–3569.

    CAS  Google Scholar 

  • Riahi, K., Thayer, B. B., Mammou, A. B., Ammar, A. B., & Jaafoura, M. H. (2009). Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers. Journal of Hazardous Materials, 170(2–3), 511–519.

    CAS  Google Scholar 

  • Rivera-Utrilla, J., Bautisa-Toledo, I., Ferro-Garcy, M., & Moreno-Castilla, C. (2001). Activated carbon surface modification by adsorption of bacteria and their effect on aqueous lesd sorption. Journal of Chemical Technology and Biotechnology, 76, 1209–1215.

    CAS  Google Scholar 

  • Rowell, D. I. (1994). Soil science method and application, longmangrop. Limitation Score Computers & Geosciences, 33, 1316–1326.

    Google Scholar 

  • Salajková, M., Berglund, L. A., & Zhou, Q. (2012). Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. Journal of Materials Chemistry, 22, 19798–19805.

    Google Scholar 

  • Shang, Y., Guo, K., Jiang, P., Xu, X., & Gao, B. (2018). Adsorption of phosphate by the cellulose-based biomaterial and its sustained release of laden phosphate in aqueous solution and soil. International Journal of Biological Macromolecules, 109, 524–534.

    CAS  Google Scholar 

  • Singh, N. B., Nagpal, G., & Agrawal, S. (2018). Water purification by using adsorbents: A review. Environmental technology & innovation, 11, 187–240.

    Google Scholar 

  • Sparks, D. L., Helmke, P. A., & Page, A. L. (1996). Methods of soil analysis: Chemical methods (No. 631.417/S736 V. 3). SSSA.

  • Sposito, G. (1980). Derivation of the Freundlich equation for ion exchange reactions in soils 1. Soil Science Society of America Journal, 44(3), 652–654.

    CAS  Google Scholar 

  • Tempkin, M., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physico-Chimica, USSR, 12(1), 327–356.

    Google Scholar 

  • Thamilarasi, M. J. V., Anilkumar, P., Theivarasu, C., & Sureshkumar, M. V. (2018). Removal of vanadium from wastewater using surface-modified lignocellulosic material. Environmental Science and Pollution Research, 25(26), 26182–26191.

    CAS  Google Scholar 

  • Tiryaki, B. R., Yagmur, E., Banford, A., & Aktas, Z. (2014). Comparison of activated carbon produced from natural biomass and equivalent chemical composition. Journal of Analytical and Applied Pyrolysis, 105, 276–283.

    CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    CAS  Google Scholar 

  • Wang, Z., Xiang, B., Cheng, R., & Li, Y. (2010). Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch. Journal of Hazardous Materials, 183(1–3), 224–232.

    CAS  Google Scholar 

  • Wang, X., Liu, Z., Liu, J., Huo, M., & Yang, W. (2015). Removing phosphorus from aqueous solution lanthanum modified pine needles. PLoS One, 10(12), 1–16.

    Google Scholar 

  • Wang, L., Xu, Z., Fu, Y., Chen, Y., Pan, Z., Wang, R., & Tan, Z. (2018). Comparative analysis on adsorption properties and mechanisms of nitrate and phosphate by modified corn stalks. RSC Advances, 8(64), 36468–36476.

    CAS  Google Scholar 

  • Williams, D. H., & Fleming, I. (1995). Spectroscopic methods in organic chemistry (5th ed.). London: McGraw-Hill ISBN: 0-07-709147-7.

    Google Scholar 

  • Xu, X., Gao, B., Wang, W., Yue, Q., Wang, Y., & Ni, S. (2009). Adsorption of phosphate from aqueous solutions onto modified wheat residue: Characteristics, kinetic and column studies. Colloids and Surfaces B: Biointerfaces, 70(1), 46–52.

    CAS  Google Scholar 

  • Xu, X., Gao, B. Y., Yue, Q. Y., & Zhong, Q. Q. (2010a). Preparation and utilization of wheat straw bearing amine groups for the sorption of acid and reactive dyes from aqueous solutions. Journal of Hazardous Materials, 182(1–3), 1–9.

    CAS  Google Scholar 

  • Xu, X., Gao, B. Y., Yue, Q. Y., Zhong, Q. Q., & Zhan, X. (2010b). Preparation, characterization of wheat residue based anion exchangers and its utilization for the phosphate removal from aqueous solution. Carbohydrate Polymers, 82(4), 1212–1218.

    CAS  Google Scholar 

  • Xu, X., Gao, Y., Gao, B., Tan, X., Zhao, Y. Q., Yue, Q., & Wang, Y. (2011). Characteristics of diethylenetriamine-crosslinked cotton stalk, wheat stalk and their biosorption capacities for phosphate. Journal of Hazardous Materials, 192(3), 1690–1696.

    CAS  Google Scholar 

  • Xu, G., Zhang, Z., & Deng, L. (2018). Adsorption behaviors and removal efficiencies of inorganic, polymeric and organic phosphates from aqueous solution on biochar derived from sewage sludge of chemically enhanced primary treatment process. Water, 10(7), 869.

    Google Scholar 

  • Yu, J., Paterson, N., Blamey, J., & Millan, M. (2017). Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel, 191, 140–149.

    CAS  Google Scholar 

  • Yue, Q., Wang, W., Gao, B., Xu, X., Zhang, J., & Li, Q. (2010). Phosphate removal from aqueous solution by adsorption on modified giant reed. Water Environment Research, 82(4), 374–381.

    CAS  Google Scholar 

  • Zhang, J., Shan, W., Ge, J., Shen, Z., Lei, Y., & Wang, W. (2011). Kinetic and equilibrium studies of liquid-phase adsorption of phosphate on modified sugarcane bagasse. Journal of Environmental Engineering, 138(3), 252–258.

    Google Scholar 

  • Zhao, T., & Feng, T. (2016). Application of modified chitosan microspheres for nitrate and phosphate adsorption from aqueous solution. RSC Advances, 6(93), 90878–90886.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboubeh Zarabi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, B., Zarabi, M. & Kolahchi, Z. Phosphorus removal from aqueous solution using modified walnut and almond wooden shell and recycling as soil amendment. Environ Monit Assess 192, 373 (2020). https://doi.org/10.1007/s10661-020-08326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08326-x

Keywords

Navigation