Skip to main content

Advertisement

Log in

Gram-negative bacteria carrying β-lactamase encoding genes in hospital and urban wastewater in Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Multidrug resistance mediated by β-lactamase in Gram-negative bacilli is a serious public health problem. Sewers are considered reservoirs of multiresistant bacteria due to presence of antibiotics that select them and favor their dissemination. The present study evaluated the antibiotic resistance profile and β-lactamases production in Gram-negative bacilli isolates from hospital sewage and urban wastewater treatment plants (UWWTP) in Brazil. Bacteria were isolated and identified with biochemical tests. Antibiotic susceptibility testing was performed by the disk-diffusion method and detection of extended-spectrum β-lactamase and carbapenemases by enzymatic inhibitor and conventional PCR. Differences in resistance to amoxicillin clavulanic, aztreonam, cefepime, and cefotaxime were observed in hospital sewage compared with urban sewage (p < 0.05). The multidrug-resistant phenotype was observed in 33.3% of hospital sewage isolates (p = 0.0025). β-lactamases genes were found in 35.6% of isolates, with the most frequent being blaKPC and blaTEM (17.8%), and blaSHV and blaCTX-M (13.3% and 8.9%, respectively). The data obtained are relevant, since the bacteria detected are on the priority pathogens list from the World Health Organization and hospital sewage could be released untreated into the municipal collection system, which may favor the spread of resistance. Changes in hospital sewage discharge practices, as well as additional technologies regarding effluent disinfection in the UWWTP, can prevent the spread of these bacteria into the environment and negative impact on water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amador, P. P., Fernandes, R. M., Prudêncio, M. C., Barreto, M. P., & Duarte, I. M. (2015). Antibiotic resistance in wastewater: Occurrence and fate of Enterobacteriaceae producers of class A and class C β-lactamases. Journal of Environmental Science and Health, Part A, 50(1), 26–39.

    CAS  Google Scholar 

  • Andrade, L. N., Novais, A., Stegani, L. M. M., Ferreira, J. C., Rodrigues, C., Darini, A. L. C., & Peixe, L. (2018a). Virulence genes, capsular and plasmid types of multidrug-resistant CTX-M(−2, −8, −15) and KPC-2-producing Klebsiella pneumoniae isolates from four major hospitals in Brazil. Diagnostic Microbiology and Infectious Disease, 91, 164–168.

    CAS  Google Scholar 

  • Andrade, L. N., Siqueira, T. E. S., Martinez, R., & Darini, A. L. C. (2018b). Multidrug-resistant CTX-M-(15, 9, 2)- and KPC-2-producing Enterobacter hormaechei and Enterobacter absuriae isolates possessed a set of acquired heavy metal tolerance genes including a chromosomal sil operon (for acquired silver resistance). Frontiers in Microbiology, 9, 539.

    Google Scholar 

  • ANVISA. (2002). Brazilian Health Regulatory Agency. Resolução – RDC n° 50, de 21 de fevereiro de. Dispõe sobre o Regulamento Técnico Para planejamento, programação, elaboração e avaliação de projetos físicos de estabelecimentos assistenciais de saúde. Database: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2002/res0050_21_02_2002.html. Accessed 05 Oct 2019.

  • ANVISA. (2013). Brazilian Health Regulatory Agency. Nota Técnica – 01/2013, de 17 de abril de. Medidas de prevenção e controle de infecções por enterobactérias multirresistentes. Database: http://portal.anvisa.gov.br/documents/33852/271858/Nota+t%C3%A9cnica+n%C2%BA+01+de+2013/5be89853-7eca-4b4b-98e4-5096b9f5a2ec. Accessed 26 Feb 2018.

  • Auguet, O., Pijuan, M., Borrego, C. M., Rodriguez-Mozaz, S., Triadó-Margarit, X., Giustina, S. V. D., & Gutierrez, O. (2017). Sewers as potential reservoirs of antibiotic resistance. Science of the Total Environment, 605-606, 1047–1054.

    CAS  Google Scholar 

  • Bogaerts, P., Castro, R., Mendonça, R., Huang, T. D., & Glupczynski, Y. (2013). Validation of carbapenemase and extended-spectrum b-lactamase multiplex endpoint PCR assays according to ISO 15189. Journal of Antimicrobial Chemotherapy, 68, 1576–1582.

    CAS  Google Scholar 

  • Bradford, P. A. (2001). Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews, 14(4), 933–951.

    CAS  Google Scholar 

  • Bradford, P. A., Bratu, S., Urban, C., Visalli, M., Mariano, N., Landman, D., Rahal, J. J., Brooks, S., Cebular, S., & Quale, J. (2004). Emergence of carbapenem-resistant Klebsiella pneumoniae species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clinical Infectious Diseases, 39(1), 55–60.

    CAS  Google Scholar 

  • Bush, K. (2013). The ABCD’s of β-lactamase nomenclature. Journal of Infection and Chemotherapy, 19(4), 549–559.

    CAS  Google Scholar 

  • Bush, K., & Bradford, P. A. (2016). β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harbor Perspectives in Medicine, 6(8), 1–22.

    Google Scholar 

  • Carraro, E., Bonetta, S., Bertino, C., Lorenzi, E., Bonetta, S., & Gilli, G. (2016). Hospital effluents management: Chemical, physical, microbiological risks and legislation in different countries. Journal of Environmental Management, 168, 185–199.

    CAS  Google Scholar 

  • Chagas, T. P. G., Seki, L. M., Cury, J. C., Oliveira, J. A. L., Dávila, A. M. R., Silva, D. M., & Asensi, M. D. (2011). Multiresistance, beta-lactamase-encoding genes and bacterial diversity in hospital wastewater in Rio de Janeiro, Brazil. Journal of Applied Microbiology, 111(3), 572–581.

    CAS  Google Scholar 

  • Chervet, D., Lortholary, O., Zahar, J. R., Dufougeray, A., Pilmis, B., & Partouche, H. (2018). Antimicrobial resistance in community-acquired urinary tract infections in Paris in 2015. Medicine et Maladies Infectieuses, 48, 188–192.

    CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). (2017). Performance standards for antimicrobial susceptibility testing. 27th edition.

  • Constantino, V. M., Fregonesi, B. M., Tonani, K. A. A., Zagui, G. S., Toninato, A. P. C., Nonose, E. R. S., et al. (2020). Estoque e descarte de medicamentos no domicílio: Uma revisão sistemática. Ciência & Saúde Coletiva, 25(2), 585–594.

    Google Scholar 

  • Conte, D., Palmeiro, J. K., Nogueira, K. S., Lima, T. M. R., Cardoso, M. A., Pontarolo, et al. (2017). Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicology and Environmental Safety, 136, 62–69.

    CAS  Google Scholar 

  • Doménech-Sánchez, A., Hernández-Allés, S., Martínez-Martínez, L., Benedí, V. J., & Albertí, S. (1999). Identification and characterization of a new porin gene of Klebsiella pneumoniae: Its role in beta-lactam antibiotic resistance. Journal of Bacteriology, 181(9), 2726–2732.

    Google Scholar 

  • El-Gamal, M. I., Brahim, I., Hisham, N., Aladdin, R., Mohammed, H., & Bahaaeldin, A. (2017). Recent updates of carbapenem antibiotics. European Journal of Medicinal Chemistry, 131, 185–195.

    CAS  Google Scholar 

  • European Committee on Antimicrobial Susceptibility Testing (EUCAST). (2017). EUCAST guidelines for detection of resistance mechanisms and specific resistance of clinical and/or epidemiological importance. Version 2.0.

  • Felis, W., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M., & Korzeniewska, E. (2020). Antimicrobial pharmaceuticals in the aquatic environment – Occurrence and environmental implications. European Journal of Pharmacology, 866, 172813.

    Google Scholar 

  • Galetti, R., Andrade, L. A., Varani, A. M., & Darini, A. L. C. (2019). A phage-like plasmid carrying blaKPC-2 gene in carbapenem-resistant Pseudomonas aeruginosa. Frontiers in Microbiology, 10, 1–5.

    Google Scholar 

  • Ge, C., Wei, Z., Jiang, Y., Shen, P., Yu, Y., & Li, L. (2011). Identification of KPC-2-producing Pseudomonas aeruginosa isolates in China. Journal of Antimicrobial Chemotherapy, 66(5), 1164–1186.

    Google Scholar 

  • González-López, J. J., Coelho, A., Larrosa, M. N., Lavilla, S., Bartolomé, R., & Prats, G. (2009). First detection of plasmid-encoded blaOXY beta-lactamase. Antimicrobial Agents and Chemotherapy, 53(7), 3143–3146.

    Google Scholar 

  • Haller, L., Chen, H., Ng, C., Le, T. H., Koh, T. H., Barkham, T., et al. (2018). Occurrence and characteristics of extended-spectrum β-lactamase- and carbapenemase- producing bacteria from hospital effluents in Singapore. Science of the Total Environment, 615, 1119–1125.

    CAS  Google Scholar 

  • Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (HCFMRP). (2018). Relatório de Atividades. Database: https://site.hcrp.usp.br/wp-content/uploads/2019/07/relatorio2018.pdf. Accessed 10 Oct 2019.

  • Instituto Brasileiro de Geografia e Estatística (IBGE). (2019). Database: https://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=354340&search=||infogr%E1ficos:-informa%E7%F5es-completas. Accessed 11 Oct 2019.

  • Jácome, P. R., Alves, L. R., Cabral, A. B., Lopes, A. C., & Maciel, M. A. (2012). First report of KPC-producing Pseudomonas aeruginosa in Brazil. Antimicrobial Agents and Chemotherapy, 56(9), 4990.

    Google Scholar 

  • Jelic, A., Rodriguez-Mozaz, S., Barceló, D., & Gutierrez, O. (2015). Impact of in-sewer transformation on 43 pharmaceuticals in a pressurized sewer under anaerobic conditions. Water Research, 68, 98–108.

    CAS  Google Scholar 

  • Karkman, A., Pärnänen, K., & Larsson, D. G. J. (2019). Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communications, 10(1), 1–8.

    Google Scholar 

  • Korzeniewska, E., & Harnisz, M. (2013). Beta-lactamase-producing Enterobacteriaceae in hospital effluents. Journal of Environmental Management, 123, 1–7.

    CAS  Google Scholar 

  • Lahlaoui, H., Khalifa, A. B. H., & Moussa, M. B. (2014). Epidemiology of Enterobacteriaceae producing CTX-M type extended spectrum β-lactamase (ESBL). Médicine et Maladies Infectieuses, 44, 400–404.

    CAS  Google Scholar 

  • Li, N., Sheng, G. P., Lu, Y. Z., Zeng, R. J., & Yu, H. Q. (2017). Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Research, 111, 204–212.

    CAS  Google Scholar 

  • Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18, 268–281.

    CAS  Google Scholar 

  • Mahon, B. M., Brehony, C., Cahill, N., McGrath, E., O’Connor, L., Verley, A., et al. (2019). Detection of OXA-48-like-producing Enterobacterales in Irish recreational water. Science of the Total Environment, 690, 1–6.

    CAS  Google Scholar 

  • Makowska, N., Philips, A., Dabert, M., Nowis, K., Trzebny, A., Koczura, R., & Mokracka, J. (2020). Metagenomic analysis of β-lactamases and carbapenemases genes in the wastewater resistome. Water Research, 170, 115277.

    CAS  Google Scholar 

  • Marti, E., Huerta, B., Rodríguez-Mozaz, S., Barceló, D., Marcé, R., & Balcázar, J. L. (2018). Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species. Chemosphere, 196, 115–119.

    CAS  Google Scholar 

  • Ojer-Usoz, E., González, D., García-Jalón, I., & Vitas, A. I. (2014). High dissemination of extended-spectrum β-lactamase-producing Enterobacteriaceae in effluents from wastewater treatment plants. Water Research, 56, 37–47.

    CAS  Google Scholar 

  • Okamoto, K., Gotoh, N., & Nishino, T. (2001). Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: Penem resistance mechanisms and their interplay. Antimicrobial Agents and Chemoterapy, 45(7), 1964–1971.

    CAS  Google Scholar 

  • Pires, J., Novais, A., & Peixe, L. (2013). Blue-Carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. Journal of Clinical Microbiology, 51(12), 4281–4283.

    CAS  Google Scholar 

  • Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447, 345–360.

    CAS  Google Scholar 

  • Rocha, F. R. R., Pinto, V. P. T., & Barbosa, F. C. B. (2016). The spread of CTX-M-type extended-spectrum β-lactamase in Brazil: A systematic review. Microbial Drug Resistance, 22(4), 301–311.

    CAS  Google Scholar 

  • Röderová, M., Sedláková, M. H., Pudová, V., Hricová, K., Silová, R., Imwensi, P. E. O., et al. (2016). Occurrence of bacteria producing broad-spectrum beta-lactamases and qnr genes in hospital and urban wastewater samples. New Microbiologica, 39(2), 124–133.

    Google Scholar 

  • Sampaio, J. L. M., & Gales, A. C. (2016). Antimicrobial resistance in Enterobacteriaceae in Brazil: Focus on β-lactams and polymyxins. Brazilian Journal of Microbiology, 47, 31–37.

    CAS  Google Scholar 

  • Sanchez, D. G., Melo, F. M., Savazzi, E. A., & Stehling, E. G. (2018). Detection of different β-lactamases encoding genes, including blaNDM, and plasmid-mediated quinolone resistance genes in different water sources from Brazil. Environmental Monitoring and Assessment, 190(7), 1–8.

    CAS  Google Scholar 

  • Sharma, V. K., Johnson, N., Cizmas, L., Mcdonald, T. J., & Kim, H. (2016). A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere, 150, 702–714.

    CAS  Google Scholar 

  • Spanu, T., Luzzaro, F., Perilli, M., Amicosante, G., Toniolo, A., & Fadda, G. (2002). Occurrence of extended-spectrum β-lactamases in members of the family Enterobacteriaceae in Italy: Implications for resistance to β-lactams and other antimicrobial drugs. Antimicrobial Agents and Chemotherapy, 46(1), 196–202.

    CAS  Google Scholar 

  • Szekeres, E., Baricz, A., Chiriac, C. M., Farkas, A., Opris, O., Soran, M. L., Andrei, A. S., Rudi, K., Balcázar, J. L., Dragos, N., & Coman, C. (2017). Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environmental Pollution, 225, 304–315.

    CAS  Google Scholar 

  • Tavares, C. P., Pereira, P. S., Marques, E. D. E. A., Faria, C. J. R., Souza, M. D. A. P., Almeida, R., et al. (2015). Molecular epidemiology of KPC-2-producing Enterobacteriaceae (non-Klebsiella pneumoniae) isolated from Brazil. Diagnostic Microbiology and Infectious Disease, 82(4), 326–330.

    CAS  Google Scholar 

  • Woodford, N., Fagan, E. J., & Ellington, M. J. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. Journal of Antimicrobial Chemotherapy, 57, 154–155.

    CAS  Google Scholar 

  • World Health Organization. (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed. Database: http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/. Accessed 20 Oct 2019.

Download references

Acknowledgments

We thank São Paulo Research Foundation (FAPESP), Coordination for the Improvement of Higher Education Personnel (CAPES) and National Council for Scientific and Technological Development (CNPq) for the constant support for our research.

Funding

This work was supported by São Paulo Research Foundation (FAPESP) (Grants 2017/10723–0 and 2014/14494–0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Inés Segura-Muñoz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagui, G.S., de Andrade, L.N., Moreira, N.C. et al. Gram-negative bacteria carrying β-lactamase encoding genes in hospital and urban wastewater in Brazil. Environ Monit Assess 192, 376 (2020). https://doi.org/10.1007/s10661-020-08319-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08319-w

Keywords

Navigation