Skip to main content

Advertisement

Log in

Assessment of spatial and temporal variations in water quality by the application of multivariate statistical methods in the Kali River, Uttar Pradesh, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Kali River is a significant source of surface water as well as the main tributary of River Hindon that flows through major cities of western Uttar Pradesh, India. It flows throughout the urban and industrial regions; hence, it carries various amounts of pollutant. Therefore, a study was conducted to examine spatial–temporal variations in river water quality by determining physicochemical variables and heavy metal concentrations at seventeen sampling stations (S1–S17) throughout the river stretch. Various physicochemical variables, namely pH, EC, TDS, turbidity, BOD, COD, TH, TA, Ca, Mg, Na, K, HCO3, Cl, SO42−, NO3, and PO43− were higher in summer than in winter. The order of mean metal concentrations was Fe > Pb > Mn > Ni > Zn > Cu > Cr > Cd. The relationships among measured physicochemical variables and pollution index were examined. Furthermore, multivariate statistical methods were used to assess spatial–temporal variation in water quality to identify current pollution sources and validate results. Water quality index and comprehensive pollution index indicated that the Kali River was less polluted from S1 to S8. However, downstream sampling sites were polluted. Pollution starts from S9 and drastically increases at and beyond S13 because of effluents from industries and sugar mills in Muzaffarnagar. The study suggests cleaning the downstream region of river to restore human health and flora and fauna in the river ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CA:

Cluster analysis

CPI:

Comprehensive pollution index

PCA:

Principal component analysis

PI:

Nemerow pollution index

WQI:

Water quality index

References

  • APHA, 2005. Standard methods for the examination of water and wastewater, twenty first ed. American Public Health Association, Washington, DC.

  • Bahri, A. (2009). Managing the other side of the water cycle: making wastewater an asset.

    Google Scholar 

  • Banerjee, U. S., & Gupta, S. (2013). Impact of industrial waste effluents on river Damodar adjacent to Durgapur industrial complex, West Bengal, India. Environmental Monitoring and Assessment, 185(3), 2083–2094. https://doi.org/10.1007/s10661-012-2690-1.

    Article  CAS  Google Scholar 

  • Belkhiri, L., Boudoukha, A., & Mouni, L. (2011). A multivariate statistical analysis of groundwater chemistry data. International Journal Environmental Research, 5(2), 537–544.

    CAS  Google Scholar 

  • BIS. (2012). Guideline for drinking waters. IS, 10500, 2012.

    Google Scholar 

  • Costello, A., Abbas, M., Allen, A., Ball, S., Bell, S., Bellamy, R., Friel, S., Groce, N., Johnson, A., Kett, M., & Lee, M. (2009). Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet, 373(9676), 1693–1733.

    Article  Google Scholar 

  • CPCB (2011). http://www.indiawaterportal.org/sites/indiawaterportal.org/files/Polluted_river_stretches_ in_India- Criteria_and_status_Central_Pollution_Control_Board_2011.Pdf.

  • CPCB (n.d.) General standards for discharge of environmental pollutants. https://www.cpcb.nic.in/GeneralStandards.pdf.

  • De Anil, K. (2003). Environmental chemistry. New Age International.

  • Dore, M. H. (2015). Global drinking water management and conservation. Springer International Publishing, Basel, Switzerland. https://doi.org/10.1007/978-3-319-11032-5.

  • Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of physical sciences, 2(5), 112–118.

    Google Scholar 

  • Forstner, U., & Wittmann, G. T. (2012). Metal pollution in the aquatic environment. Springer Science & Business Media.

  • Fulke, A. B., D’Souza, E., Maloo, A., Ram, A., Mulani, N., & Majithiya, D. (2019). Determination of spatio-temporal influences on the distribution of fecal indicator organisms along the north-west coast of India. Indian Journal of Geo-Marine Sciences, 48(05).

  • Gnanadesikan, R. (2011). Methods for statistical data analysis of multivariate observations (Vol. 321). John Wiley & Sons.

  • Gomez-Baggethun, E., Gren, Å., Barton, D. N., Langemeyer, J., McPhearson, T., O’Farrell, P., Andersson, E., Hamstead, Z. & Kremer, P. (2013). Urban ecosystem services. In Urbanization, biodiversity and ecosystem services: Challenges and opportunities (pp. 175–251). Springer, Dordrecht.

  • Habiba, U., Abedin, M. A., & Shaw, R. (2014). Defining water insecurity. In Water insecurity: a social dilemma (pp. 3-20). Emerald Group Publishing Limited.

  • Haldar, S., Mandal, S. K., Thorat, R. B., Goel, S., Baxi, K. D., Parmer, N. P., Patel, V., Basha, S., & Mody, K. H. (2014). Water pollution of Sabarmati River—a Harbinger to potential disaster. Environmental Monitoring and Assessment, 186(4), 2231–2242. https://doi.org/10.1007/s10661-013-3532-5.

    Article  CAS  Google Scholar 

  • Hanna, R. (2005). Democracy, citizenship and civil society participation in watershed management: the case of the Piracicaba, Capivari and Jundiai River Basin Committee (CBH PCJ) State of Sao Paulo-Brazil. York University (Toronto: Doctoral dissertation.

    Google Scholar 

  • Harkins, R. D. (1974). An objective water quality index. Journal - Water Pollution Control Federation, 46, 589.

    Google Scholar 

  • Hellawell, J. M. (Ed.). (2012). Biological indicators of freshwater pollution and environmental management. Springer Science & Business Media.

  • Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291. https://doi.org/10.1016/j.ecolind.2014.08.016.

    Article  CAS  Google Scholar 

  • Jindal, R., & Sharma, C. (2011). Studies on water quality of Sutlej River around Ludhiana with reference to physicochemical parameters. Environmental Monitoring and Assessment, 174(1–4), 417–425. https://doi.org/10.1007/s10661-010-1466-8.

    Article  CAS  Google Scholar 

  • Kalay, M., & Canli, M. (2000). Elimination of essential (Cu, Zn) and non-essential (Cd, Pb) metals from tissues of a freshwater fish Tilapia zilli. Turkish Journal of Zoology, 24(4), 429–436.

    CAS  Google Scholar 

  • Kaushik, A., Kansal, A., Meena, S., Kumari, S., & Kaushik, C. P. (2009). Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. Journal of Hazardous Materials, 164, 265–270. https://doi.org/10.1016/j.jhazmat.2008.08.031.

    Article  CAS  Google Scholar 

  • Kesharwani, S., Mandoli, A. K., & Dube, K. K. (2004). Determination of water quality index (WQI) of Amkhera Pond of Jabalpur city (M.P.). National Journal of Life Sciences, 1(1), 61–66.

    Google Scholar 

  • Kumar, S., & Singh, G. R. (2010). Kali Nadi water quality status in Muzaffarnagar district of Uttar Pradesh, India. Asian Sciences, 5(2), 102–106.

    Google Scholar 

  • Kumar, R., Rani, M., Gupta, H., & Gupta, B. (2014). Trace metal fractionation in water and sediments of an urban river stretch. Chemical Speciation & Bioavailability, 26(4), 200–209. https://doi.org/10.3184/095422914X14142369069568.

    Article  CAS  Google Scholar 

  • Liu, H. Y., Xie, Z. R., & Chen, D. Y. (2004). Primary assessment of environmental quality of soils in Chengdou area. Acta Scientiae Circumstantiae, 24(2), 298–303 (in Chinese).

    Google Scholar 

  • Malik, D. S., & Maurya, P. K. (2015). Heavy metal concentration in water, sediment, and tissues of fish species (Heteropneustisfossilis and Puntius ticto) from Kali River, India. Toxicological & Environmental Chemistry, 1–12. https://doi.org/10.1080/02772248.2015.1015296.

  • Maurya, P. K., & Malik, D. S. (2016). Distribution of heavy metals in water, sediments and fish tissue (Heteropneustis fossilis) in Kali River of western UP India. International Journal of Fisheries and Aquatic Studies, 4(2), 208–215.

    Google Scholar 

  • Mishra, S., Kumar, A., & Shukla, P. (2015a). Study of water quality in Hindon River using pollution index and environmetrics, India. Desalination and Water Treatment, 57(41), 19121–19130. https://doi.org/10.1080/19443994.2015.1098570.

    Article  CAS  Google Scholar 

  • Mishra, S., Kumar, A., Yadav, S., & Singhal, M. K. (2015b). Assessment of heavy metal contamination in Kali river, Uttar Pradesh, India. Journal of Applied and Natural Science, 7(2), 1016–1020. https://doi.org/10.31018/jans.v7i2.724.

    Article  CAS  Google Scholar 

  • Mohanta, B. K., & Patra, A. K. (2000). Studies on the water quality index of river Sanamachhakanandana at Keonjargarh, Orissa. Pollution Research, 19(3), 377–385.

    CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8.

    Article  CAS  Google Scholar 

  • Postawa, A., Hayes, C., Criscuoli, A., Macedonio, F., Angelakis, A. N., Rose, J. B., Maier, A. & McAvoy, D. C. (2013). Best practice guide on the control of iron and manganese in water supply. IWA publishing

  • Purkait, S., Ganguly, M., Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact assessment of various parameters polluting ganga water in Kolkata region: a study for quality evaluation and environmental impact. Environmental Monitoring and Assessment, 155, 443–454. https://doi.org/10.1007/s10661-008-0447-7.

    Article  CAS  Google Scholar 

  • Rai, R. K., Upadhyay, A., Ojha, C. S. P., & Singh, V. P. (2012). Geomorphology and geology. In The Yamuna River Basin (pp. 107–134). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2001-5_5

  • Rajmohan, N., Patel, N., Singh, G., & Amarasinghe, U. A. (2017). Hydrochemical evaluation and identification of geochemical processes in the shallow and deep wells in the Ramganga Sub-Basin, India. Environmental Science and Pollution Research, 24(26), 21459–21475. https://doi.org/10.1007/s11356-017-9704-z.

    Article  CAS  Google Scholar 

  • Ramachandra, T. V., & Solanki, M. (2007). Ecological assessment of lentic water bodies of Bangalore. The Ministry of Science and Technology.

  • Ravikumar, P., Somashekar, R. K., & Angami, M. (2011). Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the Markandeya River basin, Belgaum District, Karnataka State, India. Environmental Monitoring and Assessment, 173(1–4), 459–487. https://doi.org/10.1007/s10661-010-1399-2.

    Article  CAS  Google Scholar 

  • Reid, G. M., Contreras MacBeath, T., & Csatadi, K. (2013). Global challenges in freshwater-fish conservation related to public aquariums and the aquarium industry. International Zoo Yearbook, 47(1), 6–45. https://doi.org/10.1111/izy.12020.

    Article  Google Scholar 

  • Sharma, D., & Kansal, A. (2011). Water quality analysis of River Yamuna using water quality index in the national capital territory, India (2000–2009). Applied Water Science, 1(3–4), 147–157. https://doi.org/10.1007/s13201-011-0011-4.

    Article  CAS  Google Scholar 

  • Sharma, M. K., Jain, C. K., & Singh, O. (2014). Characterization of point sources and water quality assessment of river Hindon using water quality index. Journal of Indian Water Resources Society, 34(1), 53–64.

    Google Scholar 

  • Singh, A. K., Mondal, G. C., Kumar, S., Singh, T. B., Tewary, B. K., & Sinha, A. (2008). Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environmental Geology, 54(4), 745–758. https://doi.org/10.1007/s00254-007-0860-1.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38(18), 3980–3992. https://doi.org/10.1016/j.watres.2004.06.011.

    Article  CAS  Google Scholar 

  • Singh, V. K., Bikundia, D. S., Sarswat, A., & Mohan, D. (2012). Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, district Ghaziabad, Uttar Pradesh, India. Environmental Monitoring and Assessment, 184(7), 4473–4488. https://doi.org/10.1007/s10661-011-2279-0.

    Article  CAS  Google Scholar 

  • Srivastava, P., Grover, S., Verma, J., & Khan, A. S. (2017). Applicability and efficacy of diatom indices in water quality evaluation of the Chambal River in Central India. Environmental Science and Pollution Research, 24(33), 25955–25976. https://doi.org/10.1007/s11356-017-0166-0.

    Article  CAS  Google Scholar 

  • Suthar, S., Nema, A. K., Chabukdhara, M., & Gupta, S. K. (2009). Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges. Journal of Hazardous Materials, 171(1–3), 1088–1095. https://doi.org/10.1016/j.jhazmat.2009.06.109.

    Article  CAS  Google Scholar 

  • Suthar, S., Sharma, J., Chabukdhara, M., & Nema, A. K. (2010). Water quality assessment of river Hindon at Ghaziabad, India: impact of industrial and urban wastewater. Environmental Monitoring and Assessment, 165(1–4), 103–112. https://doi.org/10.1007/s10661-009-0930-9.

    Article  CAS  Google Scholar 

  • Tak, H. I., Ahmad, F., & Babalola, O. O. (2013). Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In Reviews of environmental contamination and toxicology volume 223 (pp. 33–52). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5577-6_2

  • Turton, A. (2008). Three strategic water quality challenges that decision-makers need to know about and how the CSIR should respond.

    Google Scholar 

  • Varekar, V., Karmakar, S., Jha, R., & Ghosh, N. C. (2015). Design of sampling locations for river water quality monitoring considering seasonal variation of point and diffuse pollution loads. Environmental Monitoring and Assessment, 187(6), 376. https://doi.org/10.1007/s10661-015-4583-6.

    Article  CAS  Google Scholar 

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R. R., Chidambaram, S., Anandhan, P., Manivannan, R., & Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171(1–4), 595–609. https://doi.org/10.1007/s10661-009-1302-1.

    Article  CAS  Google Scholar 

  • Wang, Y., Wang, P., Bai, Y., Tian, Z., Li, J., Shao, X., .Mustavich, L. F & Li, B. L. (2013). Assessment of surface water quality via multivariate statistical techniques: a case study of the Songhua River Harbin region, China. Journal of Hydro-Environment Research, 7(1), 30–40. https://doi.org/10.1016/j.jher.2012.10.003.

  • Yang, C. L., Guo, R. P., Yue, Q. L., Zhou, K., & Wu, Z. F. (2013). Environmental quality assessment and spatial pattern of potentially toxic elements in soils of Guangdong Province, China. Environmental Earth Science, 70, 1903–1910. https://doi.org/10.1007/s12665-013-2282-6.

    Article  CAS  Google Scholar 

  • Zhang, Z., Tao, F., Du, J., Shi, P., Yu, D., Meng, Y., & Sun, Y. (2010). Surface water quality and its control in a river with intensive human impacts–a case study of the Xiangjiang River, China. Journal of Environmental Management, 91(12), 2483–2490.

    Article  CAS  Google Scholar 

  • Zhao, Y., Xia, X. H., Yang, Z. F., & Wang, F. (2012). Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques. Procedia Environmental Sciences, 13, 1213–1226.

    Article  CAS  Google Scholar 

  • Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265–286.

    Article  Google Scholar 

  • Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1(1), 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the ICAR-IARI New Delhi for providing research facilities to conduct research successfully. We are also thankful to senior colleagues Dr. Swatantra Kumar Dubey and Dr. Sumit Pal for valuable suggestions and help throughout research accomplished.

Funding

The authors received financial assistance from the National Committee on Plasticulture Applications in Horticulture (NCPAH), Department of Agriculture Cooperation & Farmers Welfare, and Ministry of Agriculture Farmers Welfare, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Patel, N., Jindal, T. et al. Assessment of spatial and temporal variations in water quality by the application of multivariate statistical methods in the Kali River, Uttar Pradesh, India. Environ Monit Assess 192, 394 (2020). https://doi.org/10.1007/s10661-020-08307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08307-0

Keywords

Navigation